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Abstract

In this paper we advocate using the so-called tatlass model (LCM) approach
to control for technological differences in tradital efficiency analysis of regulated
electricity networks. Our proposal relies on thet that latent class models are designed
to cluster firms by uncovering differences in teclogy parameters. Moreover, our
approach can be viewed as a supervised methodldstedng data as it takes into
account the same (production or cost) relationshgt is analyzed later, often using
non-parametric frontier techniques. The simulagxercises confirm our expectations
and show that the proposed approach outperformer @lternative sample selection
procedures. The proposed methodology is illustratiéidl an application to a sample of
US electricity transmission firms for the periodd262009.

Keywords: electricity transmission, utilities regulation,tdat class approach, non-
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1. Introduction

Electricity networks are often regulated by implenirey incentive-based
regulation schemes that use some sort of benchngarke. a comparison of utilities’
performance with best-practice references. As shboyoelliet al. (2005), the most
commonly method used by energy regulators to measlative firms’ inefficiency is
data envelopment analysis (DEA). Unlike the paraimetpproach that requires the
specification of a particular functional form fdret cost or production functions to be
estimated, non-parametric methods impose fewemgssons on the shape of firms’
technology.

However, a key issue that is sometimes not takienaiocount by regulators (and
researchers) is the existence of heterogeneitynobserved differences among firms.
Moreover, it is often assumed in this setting titet whole set of benchmarked firms
share the same technology, and hence differencdshaviour are attributed to an
inefficient use of factors that are under contrbthee companies. Possible differences
among utilities associated with different technatésgare either overlooked or are
addressed using simple sample selection procedues,of them based on factors that
may affect performance such as geographic locationtilities’ size. Therefore, the
efficiency scores obtained from these analyses inhiglbiased and some firms might be
penalized (or rewarded) in excess if their undedyitechnology is less (more)
productive than the technology used by other firoperating with more (less)
advantageous conditions. This is particularly intpot in the case of incentive
regulation and benchmarking of electricity networkkkere the results of efficiency
analysis have important financial implications floe firms.

In this paper we advocate using a more compreheragproach to control for
technological differences in a preliminary stage, before carrying out a traditional
efficiency analysis of regulated electricity netk&rin particular, we propose using the
so-called latent class model (LCM) approach totsihle sample of utilities into a
number of different classes, where each classsigcegted with a different technology.
We argue that this approach is an appropriatesstati procedure to cluster firms in
these settings for two reasons. First, they areifspadly designed to cluster firms by
searching for differences in production or costapaeters, which is exactly what
regulators are looking for. Second, our approachbeaviewed as a supervised method
for clustering data as it takes into account thmesgoroduction or cost) relationship that
is analyzed later, often using non-parametric fesrtechniques.

The same idea is currently being developed by Agtedl. (2013) in a very
recent working paper where they use the LCM apprdaccontrol for technological
differences in an application to Norwegian powestribution firms. Our paper
reinforces the results obtained by these authora fvoth a theoretical and an empirical
point of view. In particular, we carry out a simida analysis to examine whether the
latent class approach outperforms other alterngireeedures of splitting a sample of
observations - such as cluster analysis or simplgguthe median of some relevant
variables - before the non-parametric stage. Theulsition exercises confirm our
expectations and show that the proposed approapleréarms other alternative sample
selection procedures. On the other hand, we ifitestithis procedure with an application
to the US electricity transmission firms examinaed_lorcaet al. (2013). We find two
statistically different groups of firms that should compared or treated separately. In
order to confirm the results from the simulatioreexse, we compare the partition of
the sample obtained through this method with théeen alternative clustering
procedures.



This paper is organized as follows. Section 2 ohiees the two-stage procedure
that is proposed to control for unobservable difes in firms’ technology
(environment) in energy regulation. Section 3 idtrees the simulation analysis
performed and its main outcomes. Section 4 usea ffaim the US electricity
transmission industry to compare the relative peréoce of our approach and
alternative procedures. Section 5 concludes.

2. A two-stage procedure to deal with unobserved kerogeneity in energy
regulation

As Brophy Haney and Pollitt (2009) pointed out, ulatprs have been using
several statistical methods to determine the padoce of energy utilities. Obtaining
reliable measures of firms’ performance requirealidg with controllable factors and
monitoring for the different environmental condi® under each firm operates.
However, both regulators’ reports and academiciesudo not usually deal with these
technological differences. Statistical methods haagently been developed to address
this issue. In most of these methods, heterogengitynderstood as an unobserved
determinant of the production/cost frontier, whiteefficiency is interpreted as the
‘distance’ to the frontier once heterogeneity hasrbtaken into account.

Following Greene (2005a, 2005b) we can distingivet sorts of models that
allow us to achieve this aim, namely the so-caltad fixed/random effects models and
the latent class stochastic models, also known iaise f mixture models. Both
approaches have their own strengths and weakndasti® true fixed/random effects
models, unobserved heterogeneity is captured thrauget of firm-specific intercepts
that are to be estimated simultaneously with otparameters. Hence, using this
approach implies assuming that there are as mahpogies as firmSHowever, as it
imposes common slopes for all firms, all of themarshthe same marginal costs,
economies of scale and other technological charstts.

In contrast, the latent class model approach alle@gtmating different
parameters for firms belonging to different growgss can be easily seen where the
general specification of a cost function in thenfrework is expressed as follows:

lnCl-t = (lj +,8] lnXl-t+vit|j (1)

wherei stands for firmst for time andj = 1,...,J for class.C;; is a measure of firms’
cost, Xi; is a vector of explanatory variables, and the oamdermyv;; follows a normal

distribution with zero mean and variang@. The number of classdsshould be chosen
in advance by the researcher or regulator. As bp#ndp;, arej-specific parameters,
the technological characteristics vary across ekass

Letting 6; denote all parameters associated with clpsshe conditional
likelihood function of a firmi belonging to clas$ is LF;;(6;) = [17=, LF;;(6;). The
unconditional likelihood for firm is then obtained as the weighted sum of thelass

likelihood functions, where the weights are thebatualities of class membership;.
That is:

! This idea can be considered to underlie the natjoiis between regulators and utilities, wherétiets
wield uniqueness as a reason to avoid being compeith their peers.
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where, 0=(0y,...,0;), 6=(61,...,6;) and the class probabilities are parameterized as
multinomial logit model:

(8%a)
Py(8) = 5okt

Toeww Uk 870 @

whereq; is either an intercept or a vector of individupésific variables. Therefore, the
overall likelihood function resulting from (2) an(®) is a continuous function of the
vectors of parametersandd, and can be written as:

Maximizing the above maximum likelihood gives asyatjgally efficient
estimates of all parameters. A necessary conditondentify the whole set of
parameters is that the sample must be generateddirdeast two different technologies
or two noise terms.

Three comments are in order. First, in this franrweach firm belongs to one
and only one class. Therefore, the probabilitiexlaEs membership just reflect the
uncertainty that researchers or regulators havetatihe true partition of the sample.
The estimated parameters can be used to computeriposclass membership
probabilities using the following expression:

o LF;(8;)Pij (8))
P(ili) = j9,)Pij O) 5
Glo) Z§=1LFij(9j)Pij )] )

These posterior probabilities of membership cam the used to allocate each
firm to a particular class, e.g., each firm is edited to the class with the higher
posterior probability.

On the other hand, only between-groups and novithgial heterogeneity is
controlled using a latent class model becauseraisfbelonging to a particular group
share the same technology. This situation is ptessitenergy economics if, as happens
in our application, firms operating in areas witfietent environmental conditions must
choose between a limited number of technical staistizo expand and maintain their
networks. As each class has a different set ofnpaters, the latent class approach is
able to control for the aforementioned differen@@senvironmental conditions and
technologies.

Finally, it should be noted that the random term(ih follows a symmetric
distribution and hence it does not include a tradél one-sided inefficiency term. In
other words, unlike previous studies estimatingratlass stochastic frontier modz&ls,
we advocate using a non-frontier model in a fitage as a “statistical” tool to cluster
firms before carrying out a traditional efficiengnalysis of regulated electricity
networks (second stage). Compared to other sarepkrating methods, our proposal
relies on the fact that latent class models aregded to cluster firms by searching for
differences in production or cost parameters, whichexactly what regulators are
looking for? Moreover, our approach can be viewed as a supervisethod for

% These standards are either proposed by the ItiemahElectrotechnical Commission or the Institafe

Electrical and Electronics Engineers.

% See, for instance, Orea and Kumbhakar (2004).

4 . . . .
Another tool that could be used in the first stemeplit the sample and to reduce heterogeneityngmo

firms is the k-means cluster analysis method. Algitothis procedure was proposed by Lloyd in 1967 (i

was not published until 1982), this name was fistd by MacQueen (1967). This method is a popular

unsupervised algorithm for clustering data whickvidely used in scientific research. The aim ofstéu
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clustering data as it examines the same (producti@most) relationship that is analyzed
later in the traditional efficiency analysis. Inde¢he simulation exercises carried out in
next section show that the proposed approach datpes other alternative sample
selection procedures, such as cluster analysihersimple use of median of some
relevant variables.

As mentioned above, although it is possible tonestie a stochastic cost frontier
in the first stage of our procedure, we proposeiiabig the efficiency scores later.
There are three reasons for this. First, ignoriregdsymmetric error term traditionally
associated with inefficiency prevents the appeaaot convergence problems in
practice when estimatinglatent class model, which by nature is highly nioredr.This
facilitates replication of the procedure when reslears or regulators compare different
specifications of the underlying technology. Secdhis empirical strategy allows us to
compute efficiency scores using more flexible reprgation of firms’ technologies if
non-parametric techniques such as DEA are employedlly, DEA is the method
mainly used by regulators.

In a second stage we apply DEA. As noted by Zkbal. (2008), DEA has
become a very popular tool in energy and envirorialestudies, especially for
benchmarking electric utilities. It is a type offiefency analysis which involves
mathematical programming to construct a frontiebedgt performing companies. Farrell
(1957) was the first to propose this type of frentanalysis and since then there have
been many authors who have developed and appliéerait models which have
enlarged the literature in DEA methodology (seellCetal., 2005).

In this paper, as we will assume that the outpuelleannot be modified by
firms we will use an input-oriented DEA model. Thassumes that technical
inefficiency can be viewed as a proportional reuncin input usage or cost while
maintaining the output levels constant. In our s$ation exercise we impose constant
returns to scale (CRS), so any efficient firm skobé operating at an optimal scale
level. The optimization problem in this case cand@esented as:

ming ,0,
st —q;+QA=0,
Ox; — XA =0,
A=0 (6)

where/ is a vector of constants aflds a scalar calculated for each observation which
represents the efficiency score for thd firm. g andx; are the vectors of inputs and
outputs for thd-th firm respectively, whil&Q and X are the input and output matrices
for all I firms. This linear programming problem must bevedll times and gives an
efficiency scored equal or lower than one for each firm. It shouddrnoted in addition
that in our empirical application we do not assuthat all the companies exhibit

analysis is to divide the observations into homegers and distinct groups by taking advantage of the
information contained in variables or attributesrérest. It involves minimizing the following adjtive
function:

: 2
J =2 Sl = ¢

i 2
wherek is the chosen number of clustensthe number of data points, aﬂdi(]) - ¢j|| is the distance
between a certain data poiqft) and the cluster centre,



constant returns to scale as we use a variablenseto scale (VRS) specificatidn,
which only requires adding the convexity constraiftl = 1 to the minimization
problem in (6).11 is a vector of ones, and multiplying by the veabd weights/
basically ensures that firms are only compared finths of a similar size.

3. Simulation analysis

In this section we carry out a simulation exerdizeexamine whether a latent
class approach is a good procedure to find grofig®mparable companies within a
sample when we want to apply a benchmarking withADEommonly used in
regulatory processes.

The simulation exercise can be summarized as fslldWe initially generate
1,000 observations of two hypothetical outpuig {>) using an uniform distribution
between 0 and 1. We have chosen this distributistead of the normal distribution
because these variables cannot take negative yadmelsoutputs in DEA must be
positive. Inefficiency levels are obtained assumitigat the inefficiency term,
represented as, is a positive half-normal distribution with zereean anar? variance.
Random noise is simulated assuming that the nersewv follows a normal distribution

with zero mean and? variance. We impose = /g2 + ¢2 equal to 1 which, given the
specification that we have chosen (see below),ieapghat the size of the random term
in our function is relatively low, i.e. our levetd generated efficiency are quite high.
We also fixedy = ¢2/(c% + 0Z) equal to 0.5, which implies that the weights of
inefficiency and noise in the function are the sa@esen the previous values, this
implies thato, = g, = 0.71, and therefore is equivalent to generating a vailtie
A =0,/0, equal to L

Firms’ costs are simulated following the normalizédear specification
proposed by Bogetoft and Otto (2011) for the retiutaof electrical Distribution
System Operators in Germany. This functional forthowss us to easily introduce
heteroscedasticity in our data generation prodestowing this type of specification,
our cost function can be expressed as follows:

=Bt Bt ul + ()

wheref;, andp, stands for the marginal costs of the outpdtsandY, and define our
technologies. With this functional form, we are msmg constant returns to scale. This
prevents size effects when comparing our samplaragpg methods. As the random
noise term takes both positive and negative valesimpose on all technologies that
(61 + B2) =10 to get positive costs. Technologies thusediih the relative weight of
each p, i.e. in relative marginal costs. In particulagvk simulated three possible
technologies:

- TechnologyA: B, =81 , (B1=5, B2=15)
20

- Technology B: 8, = 2B, , (31 = 13—0 B2 = ?)

® Although is quite common to presume that eledtritiansmission firms are natural monopolies, this
confirmed by the increasing returns to scale okthiinom different authors: Huettner and Landon g)97
Pollitt (1995), Dismukest al. (1998) and Llorcat al. (2013).

® Although the values of these parameters have legitrary chosen, the results obtained from the
simulation are consistent respect to changes imthe long as we keep the underlying efficiency at
‘normal’ levels.



- Technology C: 8, =48, , (B =2, B, =8)

Both coefficients are the same in technology A, levinnarginal costs are increasingly
different in the other two technologies, B and C.

Next, we will examine the robustness of our resbitsadding differences between
outputs. In particular, we modify the original sg#ital distribution of one of the outputs
by doubling and quadrupling its range of valueat tk:

- Distribution 1: Y;~U(0,1) , Y,~U(0,1)
- Distribution 2: Y;~U(0,1) , Y,~2-U(0,1)
- Distribution 3: Y;,~U(0,1) , Y,~4-U(0,1)

Taking into account that we always apply the tetbupyp A to the first 500
observations and then B or C to the following 508eyvations, and that we have three
output distributions, 6 possible scenarios are inbth In Table 1 we show the
scenarios and the percentage of success preditengnderlying class membership.
This percentage is computed by comparing the ratigsthat can be recovered after
applying an OLS regression to different groups luseyvations with the real ones. The
estimated ratios are also shown in Table 1. Thenattd values give an idea about how
well each procedure is able to identify the differenderlying technologies.

[Insert Table 1]

The first empirical exercise has to do with theecaeswhich DEA is applied using
the real separation of our data (i.e. the first 6B8ervations belonging to technology A
and the later 500 observations belonging to B orBy)construction the percentage of
success in this case is 100%. For this reasonei@scise is used as a benchmark to
study the performance of four sample separatiorhaust the median of the c6st
cluster analysis considering the outputs, clustahysis including both outputs and cost,
and the latent class model (that involves both wiugpd cost information).

Looking at the percentages of success ang/#tagios we can confirm that the
LCM is the method that is most precise in assigmibgervations to technologies and is
also the best at identifying the relationship bemveéechnologies. As we move to a
different scenario where there are more unequalifies among groups we observe that
there is a clear divergence in the behaviour of ghecedures: whereas the LCM
improves its percentage of success in the predfctibie alternative procedures only
slightly improve their performances.

In Table 2 we show the average efficiencies that are obdasdfeer DEA is
applied separately to each group of firms. The ¢attmn shows the sums of squared
differences with respect to the real separatioe.chsaving aside the ‘true’ partition of
the sample, i.e. the real separation case, the ICikle approach that gives the largest
efficiency scores. Moreover, the sums of squaréfdrénces in the last column indicate
that the LCM is not only the procedure that givesauhigher average efficiency level
(and closest to the real separation case) butialsbe best at predicting individual
efficiencies.

[Insert Table 2]

" The sample separation using the median of a Jerigdn be viewed as a cluster analysis in which a
dummy variable that takes value 1 for values abibnee median, and O otherwise, is considered as a
classification variable.

® The estimated probabilities for the most likelietat class also increase, so the LCM not only im@so

its prediction capacity but also the precision withich each observation is assigned.
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Once unobserved heterogeneity is taken into accandt‘'removed’ in a first
stage, larger efficiency scores are obtained whamyiog out a traditional DEA
analysis. It should be noted that as inequalitiesvben groups rise, the average
efficiency score obtained using the LCM as a samsplgaration method even exceed
the average efficiency score from the real separatase. This shows that an imperfect
assignment of firms to groups can lead us to obégher levels of efficiency or, in
other words, the closest frontier to a firm is abways its real reference frontier. This
result is quite interesting from a firm’s perspeetas in some cases this procedure can
be more favourable for them than a ‘true’ benchnmgrkin spite of this, it seems that
the efficiency level is a good indicator of how Weich procedure performs and assigns
firms to groups.

In Figure 1we show the positive correlation that exists betwefficiency and
success in assigning observations to technologieg) the LCM approach. This figure
allows us to examine the discriminatory power @& thodel when there are either larger
differences between technologies (illustrated assttift from the blue to the red line) or
between output data generation processes (illestras movements along the red and
blue lines). As expected, the percentages of sacaes much larger when the two
technologies differ notably in their characteristidt is worth mentioning that this
increase in percentages of success is especigligriant when there is no separating
information on the output side, i.e. when both oatdpare similarly generated. When
additional information for splitting the sampleadsntained in the way both outputs are
generated, both efficiency levels and percentagesuocess increase regardless of
whether the technologies are similar or diverse.

[Insert Figure 1]

In summary, the above results clearly indicate tthee LCM deals with
unobserved heterogeneity much better than the ©tfAdris conclusion is one of the
main contributions of the paper because it provieesience in favour of using the
LCM as a simple statistical sample separation nuetho energy regulatioh. We
attribute this better performance to the fact that LCM, unlike other methods, splits
the data taking into account the objective of teeosd stage, where a relationship
between outputs and inputs (or costs) is estimatedrder to compute inefficiency
scores. Alternative sample separating methods topl{o find statistical differences in
the mean values of a set of variables. In thiseseansd borrowing the terminology used
for dimension reduction, this approach can be pmeted as a ‘supervised’ method to
split the data.

4. Application to the US electricity transmissionmdustry

We next illustrate the proposed procedure with a@plieation to the US
electricity transmission industry. The databasedusethis paper is the same as in
Llorca et al. (2013) and contains 405 observations on 59 USraligg transmission
firms for the period 2001-2009.

Following the literaturé® we specify a standard cost function with four op
where our cost variable is Totex (which includegragion and maintenance expenses,

° In this sense, our paper can be used to justfyapproach first suggested by Agetlbl. (2013).

19 As is highlighted by Brophy Haney and Pollitt (2)1benchmarking of electricity transmission vigt

is a challenging task due to the small number ahdmission utilities that usually operate in the
jurisdiction of a particular regulator. This likedxplains why there are few empirical papers ptblison
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annual depreciation on capital assets, and anetiainron the balance of capital). The
four outputs arePeak Load (PL), which is the maximum peak load of the yearirty

60 minutes;Electricity Delivered (DE), which is the total annual energy delivergd b
the system:Total Energy™ (TE), which stands for the total energy of thetsys
including total net own generation, total purchaBes others, net exchanges in the
system (received-delivered), net transmission tbers and transmission by others; and
Network length (NL), which is a measure of the geographic spaghch company and
is obtained as the sum of all transmission linesniles regardless of the number of
power cables on each power line. The four outpatsidered (explanatory variables)
and the cost variable (dependent variable) willibed later on in the DEA stage.

To analyse robustness, we extend the standard mbgeladding four
environmental variables to split the sample of graission utilities. Three of these are
weather variablesTemperature (TMIN), which represents the annual minimum
temperature in Fahrenheit degre@énd speed (WIND), which is the average of the
daily mean wind speeds in knots; aRrcecipitation (PRCP), which is the average of
daily precipitation in inches. The last environnantariable is th&rowth in Demand
(GDEM) for each firm over time. The descriptivetstics of the full set of variables
are shown imable 3

[Insert Table 3]

The specification of the cost function used in shenple-separating stage of our
procedure is quite simple in order to avoid coneang problems and facilitate the
replication of the procedure. Unlike our simulatiove have preferred to use a Cobb-
Douglas (or logarithm) specification of the coshdtion due to its widespread use and
acceptance in previous empirical studies. Convemgiroblems prevented us from
estimating the LCM for more than two classes. Havethese problems did not appear
using the Cobb-Douglas functional forAs we do not know the true number of
underlying technologies, this is an interestingaadage of the logarithm specification
of the modelThe coefficients for the Cobb-Douglas specificat@wa shown imable 4
Except for total energy (TE) for one of the classalé estimated coefficients are
statistically significant and positivé.

[Insert Table 4]

In Figure 2we illustrate the individual efficiency scores aibed after applying
DEA as the number of classes is increased. As ¢gethe average efficiency score
for the so-called non-separation mddé 65%, much lower than the average efficiency
obtained from the model with two classes (77%). iftost comprehensive model that is
estimated is a LCM with 7 classes. Although therage efficiency score for this model

efficiency analysis of electricity transmissionnfis. Exceptions are Huettner and Landon (1978)jtPoll
(1995), Dismukest al. (1998) and von Geymueller (2009). However, non¢heke articles deal with
unobserved heterogeneity or technological diffeesnc

' Although Electricity Delivered and Total Energy are both variables that measure electricity floiwvs,
can be observed in Table 3 that they are quiteerdifft sinceTotal Energy includes transmission for
others. We have decided to include both outputabées as they help to increase the efficiency score
obtained with DEA in the second stage.

12 As shown in the Appendix, for two groups the linespecification gives reasonable parameter
estimates. It also gives similar group membershgbabilities and efficiency scores. For instanée t
percentage of coincidence in the assignment ofrgaens is87.7%, and the average efficiency score is
higher using the Cobb-Douglas (77.03%) than udiedinear form (72.45%).

13 Note that in the non-separation model the sampferos is not divided into several groups and henc
can be viewed as a model with one class.



goes up to 87%, the largest change in efficienotesirs when we move from one class
to two classes. The values of both the AIC and Biiteria for model selection are
shown inFigure 3.While the AIC always decreases when we move togetanumber
of classes, the BIC statistic has its minimum vdietwo classes. Taking the BIC
statistic into account and given that the main mepment in efficiency levels is
observed when we move from one class to two, weeltte model with two classes as
our preferred modéf:

[Insert Figure 2]
[Insert Figure 3]

We show inFigure 4the efficiency scores obtained using differenthods to
split the sample into two groups of firms. As expec the lowest efficiency levels are
obtained when there is no separation of firms ahdnwe use cluster procedures where
we include the size of the network and the cossegsarating variables. A simple
division using the median of cost seems to prodaoger scores of efficiency in the
second stage. As in the simulation exercise, thge# efficiency scores are obtained
when the LCM is used as a statistical tool to antdor unobserved differences among
firms.

[Insert Figure 4]

We next introduce some environmental variables, (iteee weather variables
and demand growth) as sample-separating variabléisei first stage of procedure to
analyse the robustness of our resuitsble 5shows the estimated coefficients for the
extended LCM. The coefficients of the variablesluded in the cost function do not
undergo major changes with the exception of elagtyridelivered (DE), which is no
longer statistically significant in one of the das. Regarding the sample-separating
variables, temperature, wind and growth of the deinare statistically significant,
which implies that they have helped the procedarspit the sample in two groups.
Despite this, there are not many differences betwee previous LCM that ignored
this information and the extended LCM that includeparating variables. For instance,
the percentage of coincidence in allocating obsema of both specifications is quite
high (88%). In additioni-igure 5shows that both LCMs give us larger efficiencyreso
than extended k-means procedures that include @magntal variables (alone or with
information about the cost function). As with thenslation exercise, these results
suggest that the latent class approach is thepoesedure for finding ‘homogeneous’
groups of firms when we do not have informationwtibe environment in which these
firms operate. When this information is availablliee LCM still outperforms other
sample separating methods.

[Insert Table 5]
[Insert Figure 5]

14 Both criteria are based on the maximum value ef ldgarithm of the likelihood function and the
number of parameters estimated. However, as thepBh@lizes more adding successive parameters, it is
our favoured criterion.

!> The separation when we take into account all thpuds and the cost or just the network and theisos
the same.
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5. Conclusions

In energy regulation, differences in technologiesunobserved heterogeneity
between firms are often not taken into account itkedpe theoretical importance of
environmental features on utilities performance.iagrell et al. (2013), in this paper
we propose using a latent class approach as atst@timethod to split the sample into
groups of more comparable firms before carrying autaditional efficiency analysis
using DEA, the most common frontier technique udmd regulators in utility
benchmarking.

We have demonstrated through a simulation exerttis¢ the latent class
approach allocates each observation to its refergmoup better than the alternative
procedures and that the efficiency scores obtaimékde second stage are larger. It has
also been shown that when large differences betwahnologies or output
distributions arise, the discriminatory capacitydatie assignment success of the
procedure increases and the second-stage efficiéamls converge to the true
underlying levels. An additional outcome of our slation exercise is the large
correlation between average efficiency levels drelgercentage of success allocating
observations into classes. This outcome is veryomapt because it suggests that the
average efficiency level obtained in a second stagebe used in practice as a good
proxy of the relative performance of any sampleasating method that has been
carried out before the traditional efficiency arsagy

Finally, we illustrate the proposed method withagplicationto a sample of US
electricity transmission firms for the period 20R299.We find that the largest change
in efficiency scores occurs when we move from a ehedthout any partition of the
sample to a LCM that only splits the sample int® talasses. Like the simulation
exercise, our empirical application suggests uait@tent class approach as a statistical
method to deal with unobserved heterogeneity arfterdhces in environmental
characteristics.
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Table 1.Success of the procedures identifying technologies

Simulation Procedure % Success Underlying technology
Group 1 (B1/p2) Group 2 (B1/p2)
A&B Simulation - 1.000 0.500
(OD 1) Real separation 100.00 1.080 0.597
Median (C) 49.60 0.890 0.756
Cluster (M, Y2) 46.50 0.849 0.815
Cluster (Y, Y2, C) 49.30 0.894 0.763
LCM 65.70 1.063 0.555
A&C Simulation - 1.000 0.250
(OD 1) Real separation 100.00 1.080 0.331
Median (C) 50.20 0.678 0.575
Cluster (M, Y2) 46.50 0.646 0.642
Cluster (Y, Y2, C) 49.90 0.684 0.593
LCM 79.20 1.162 0.337
A&B Simulation - 1.000 0.500
(OD 2) Real separation 100.00 1.077 0.597
Median (C) 55.00 0.834 0.799
Cluster (Y, Y2) 54.00 0.822 0.812
Cluster (M, Y2, C) 55.10 0.822 0.802
LCM 79.30 1.110 0.596
A&C Simulation - 1.000 0.250
(OD 2) Real separation 100.00 1.077 0.331
Median (C) 57.20 0.723 0.562
Cluster (M, Y2) 54.00 0.656 0.609
Cluster (Y, Y2, C) 58.30 0.714 0.529
LCM 87.90 1.099 0.337
A&B Simulation - 1.000 0.500
(OD 3) Real separation 100.00 1.076 0.598
Median (C) 57.40 0.868 0.765
Cluster (M, Y2) 53.90 0.833 0.785
Cluster (Y, Y2, C) 57.80 0.863 0.754
LCM 90.60 1.097 0.583
A&C Simulation - 1.000 0.250
(OD 3) Real separation 100.00 1.076 0.331
Median (C) 60.60 0.779 0.493
Cluster (Y, Y2) 53.90 0.674 0.576
Cluster (M, Y2, C) 61.80 0.772 0.486
LCM 94.70 1.102 0.328
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Table 2 Efficiencies with DEA

Simulation Procedure Av. Eff. SSD

A&B Real separation 76.73 -

(OD 1) No separation 67.15 135,252
Median (C) 73.29 118,885
Cluster (Y, Y2) 70.38 108,590
Cluster (Y, Yz, C) 72.91 118,993
LCM 73.35 40,268

A&C Real separation 75.16 -

(OD 1) No separation 54.70 533,029
Median (C) 65.26 322,549
Cluster (Y, Y2) 61.65 379,683
Cluster (Y, Yz, C) 64.65 338,483
LCM 78.93 139,993

A&B Real separation 83.61 -

(OD 2) No separation 73.28 151,038
Median (C) 76.75 121,264
Cluster (1, Y2) 75.93 119,387
Cluster (Y, Y2, C) 76.22 124,400
LCM 85.75 51,232

A&C Real separation 83.14 -

(OD 2) No separation 63.22 507,703
Median (C) 69.29 372,090
Cluster (1, Y2) 68.14 386,773
Cluster (Y, Yo, C) 68.32 389,718
LCM 85.87 45,663

A&B Real separation 89.26 -

(OD 3) No separation 78.75 180,309
Median (C) 80.36 158,268
Cluster (1, Y2) 79.99 160,646
Cluster (Y, Yo, C) 80.20 159,799
LCM 90.76 29,598

A&C Real separation 89.24 -

(OD 3) No separation 70.49 511,481
Median (C) 73.45 429,212
Cluster (1, Y2) 72.86 446,596
Cluster (Y, Yo, C) 72.95 438,210
LCM 90.15 16,511
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Table 3. Descriptive statistics

Variable Units Mean Max. Min. Std.Dev.
Totex Cost US$ 144,602,000 667,127,000 20,713,600 120,324,000
Peak Load Output MW 6,173 23,111 380 5,533
Electricity Delivered Output MWh 6,280,310 74,584,700 56,730 8,839,980
Total Energy Output MWh 34,557,900 116,415,000 2,339,000 26,752,600
Network Length Output Miles 4,064 16,292 1,087 3,253
Minimum Temperature Weather °F -10.35 19.90 -59.80 16.51
Wind Speed Weather Knots 6.84 9.60 4.63 1.01
Precipitation Weather Inches 0.07 0.16 0.01 0.03
Growth in Demand Other % 0.03 244.11 -74.96 17.72

16



Table 4. Parameter estimates for the Cobb-Douglas spatidit

LCM-CD

CLASS 1 CLASS 2
Variable Coefficient t-ratio Coefficient t-ratio
Constant 14.257 7.852 8.211 16.037
In PLy 0.808 4.853 0.144 3.109
In DE; 0.044 1.900 0.054 5.258
In TE; -0.261 -1.357 0.415 7.817
In NL; 0.184 2.038 0.136 6.192
Sigma 0.380 22.982 0.119 11.332
Log LF -39.666
Prior class
probabilities 0.444 0.556
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Table 5.
Parameter estimates for the Cobb-Douglas spedditatith separating variables

LCM — CD (Weather, Demand)

CLASS 1 CLASS 2
Variable Coefficient t-ratio Coefficient t-ratio
Constant 13.957 8.070 8.286 17.580
In PLy 0.800 4.907 0.166 3.881
In DE; 0.042 1.457 0.060 5.823
In TE; -0.237 -1.300 0.401 7.785
In NL; 0.182 2.085 0.123 5.133
Sigma 0.381 22.078 0.111 11.382
Log LF -26.726
Prior class
probabilities 0.479 0.521

Estimated prior prob. for class membership

Variable Coefficient t-ratio
Constant -0.088 -0.416
TMIN; -0.065 -3.001
WIND; -0.373 -2.153
PRCR 11.910 1.535
GDEM, 0.092 1.744
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Figure 1. Average efficiency and percentage of succesthtot. CM
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Figure 2. Efficiency scores obtained with LCM
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Figure 3. AIC and BIC for the different LCM
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Figure 4. Efficiency scores obtained with different proceshu
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Figure 5. Efficiency scores including environmental varesbl
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APPENDIX

Parameter estimates for the linear specificatiothefL.CM

LCM - Linear
CLASS 1 CLASS 2
Variable Coefficient t-ratio Coefficient t-ratio
Constant 16,326,900 1.044 23,246,900 10.070
PL; 22,756.088 12.640 3,442.459  4.990
DE; 4,194  7.653 0.546 5.318
TE; -0.698 -1.287 1.521 10.312
NL; 6,211.166 3.343 4,234.141 6.327
Sigma 57,039,600 15.028 16,185,400 22.864
Log LF -7,580.103
Prior class
probabilities 0.444 0.556
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