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Abstract

The electricity industry in most developed courstrias been restructured over
recent decades with the aim of improving both senguality and firms’ performance.
Regulated segments (e.g. transmission) still peovitte infrastructure for the
competitive segments and represent a notable anajuiie total price paid by final
customers. However there is a lack of empiricallisithat analyze firms’ performance
in the electricity transmission sector. We condanot empirical analysis of the US
electricity transmission companies for the peri@®2-2009. We use stochastic frontier
models that allow us to identify determinants o’ inefficiency and to control for
weather conditions, potentially one of the mostisiee uncontrollable factors in
electricity transportation. Our results suggest thare is room for improvement in the
performance of the US electricity transmission elystRegulators should also take into
account that more adverse conditions generate highels of inefficiency and that
achieving long-term efficiency improvements tendsdeteriorate firms’ short-term
relative performance.

Keywords: electricity transmission, heteroscedastic stooahastost frontiers,
inefficiency determinants
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1. Introduction

The electricity industry in most developed courstrieas been restructured over
recent decades with the aim of reducing costs, amipg service quality and
encouraging electricity utilities to perform effcitly. As a result, former state-owned
utilities were privatized and electricity sectorere vertically separated into generation,
transmission, distribution and commercializatioartigularly in the Europe (see Jamasb
and Pollitt, 2005). Whereas some of these segmenth as generation and
commercialization were opened to competition, othggments such as transmission
and distribution are still regulated. In this senseentive-based regulation schemes
have been recently implemented in several coun{ees UK, Norway) in order to
encourage both transmission and distribution igt#lito perform efficiently.

Joskow (2011) points out that for industries inebhiegulated segments provide
the infrastructure platform upon which competitigegments rely, social welfare
depends on firms’ performance and reforms madeoth begulated and competitive
segments. Much of the research in the electricidustry has focused on competitive
wholesale markets, although the regulated segnmntsde the infrastructure for the
competitive segments and even though networks itoiesta significant share of the
final price paid by electricity consumersEven though electricity transmission is
necessary for distribution and commercializatidreré is a lack of empirical studies
that analyze both the economic characteristick@téchnology and firms’ inefficiency
in the electricity transmission.

Statistical benchmarking methods have been largeslgd in the electricity
industry to determine the relative efficiency aflividual firms’ costs compared to their
peers (see Brophy Haney and Pollitt, 2009, 201)tai@ing reliable (and fair)
measures of firms’ inefficiency requires contradiiior the different environmental
conditions under which each firm operates. Thiggpecially acute in benchmarking
because of the financial implications that thislgsia can have over the firms and their
effect over the whole network.

One of the most decisive uncontrollable factorglectricity transportation (i.e.
in transmission and distribution) is the weathendittons of the area in which the
companies operate. Billinton and Wenyuan (19913, Bitlinton and Acharya (2005)
tried to explain changes in the probability of diad rate in the system using complex
mathematical models. Generally speaking, they pdinbut that most technical
interruptions occur when weather is adverse angarticular, extremely adverse. They
also showed that assessing likely failure ratedenignoring weather tend to give too
optimistic and erroneous predictions.

Regarding electricity transmission, Billinton anduW2001) pointed out that
overhead transmission lines are exposed to a \aiugerof weather conditions and, that
both failures rates and the probability of overiagpfailures tend to increase sharply
during periods of extremely adverse weather comusti Rothstein and Halbig (2010)
find that many atmospheric and hydrological paramsetnot only affect electricity
generation and consumption, but also electriciydportation. Indeed, overhead lines
are affected by atmospheric influences in sevemswsuch as failures by lightning,
wind, additional weight (e.g. ice or snow), low {@enatures, humidity and moisture.

! Typically distribution and transmission chargesnbined compose around 25% of the pre-tax and
environmental charges residential bill.
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Despite the potential role of weather conditionslgctricity transportation, only
a few recently published papers have analyzed fipegformance in the electricity
distribution sector controlling for environmentalcfors. These include Nillesen and
Pollitt (2010), Yuet al. (2009), Jamasbt al. (2010, 2012) and Growitsc#t al. (2012).
On the other hand, as far as we are aware thererdyefour published papers that
separately study the performance of transmissiomsfi and none of them have
controlled for weather characteristics and inedindy determinants. Using a sample of
US firms, Pollitt (1995) analyzed differences irfi@éncy between state-owned and
private electricity transmission companies. He dat find significant differences
between both types of firms using parametric and-perametric specifications of the
frontier model. Using US data, Huettner and Lan¢®v8) and Dismukest al. (1998)
have examined the existence of returns to scaleeiprovision of electric transmission
services. Huettner and Landon (1978) do not fireasing returns to scale, except for
one category of sales expenses. In contrast, Diemek al. (1998) find significant
economies of scale for all the NERC (North Ameriédectric Reliability Corporation)
reliability regions using data for the period 198831. Recently, von Geymueller
(2009) carried out a comparison of static and dynaDEA models in electricity
transmission using data of 50 US utilities for fhexiod 2000-2006. The author finds
that static models tend to overestimate firms’fiocgfncy because they do not take into
account the existence of quasi fixed inputs.

Our paper contributes to the literature analyziirgn$’ performance in the
electricity transmission industry with an empiricahalysis of the US electricity
transmission system for the period 2001-2009. Tiayais of economic characteristics
of the technology (such as economies of scale ona@uies of density) and the
inefficiency of each US utility relies on the estition of several specifications of the
heteroscedastic frontier model proposed by Cawdilal. (1995). In this model, the
variance of the inefficiency term depends on a watege of variables such as weather
variables, a measure of companies’ cost structodegaowth rates of energy demand.
Hence, unlike previous papers, our stochastic ieomhodels allow us to identify the
determinants of firms’ inefficiency in this indugr An additional contribution of the
present paper is that we control for weather charstics by including a set of weather
variables as determinants of firms’ inefficiencythvere gathered specifically for the
present application. In addition, as our samplégdas more recent than those analyzed
in previous papers we can see whether there has &eamprovement in average
efficiency in the US electricity transmission inthys

The estimated coefficients provide useful infororat about the firms’
performance with both policy and managerial imglmas. We find using more recent
data and larger firms than in previous papers tgaten network infrastructure,
electricity transmission networks exhibit naturabmopoly characteristics. Our results
also indicate that more adverse conditions genehnédber levels of inefficiency.
However, we find that investing in capital is atbestrategy than incurring additional
operating costs to deal with adverse weather ciamgit On the other hand, we find that,
as expected, firms' performance gets better whemadd tends to be steady as firms
cannot adjust their inputs without cost over tinfdhe average efficiency at the
beginning of the period is larger than in previatadies. But, regardless of the
estimated model, our results indicate that efficyehas declined (and diverged) over

2 Our model also allows us to discuss whether thir@mmental factors should be treated as deterntsnan
of firms’ performance or as technological cost dra:
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time, suggesting that there is room for improvemienthe performance of the US
electricity transmission system.

This paper is organized as follows. Section 2 mlesi a brief review of
transmission and distribution literature and thesmcommonly used approaches to
implement in incentive regulation schemes. SecBodescribes the theoretical cost
function that we estimate as well as the empirspedcification of the model. Section 4
presents the data and variables used in the emlpaitalysis. Section 5 reports the
parameter estimates and the results obtained frasetestimates. Section 6 presents
the main conclusions.

2. Benchmarkingin electricity transmission

The electricity sector is an industry with diffetesnd interrelated activities,
which are affected by production and consumptiocisiens across the whole system.
The US electricity system traditionally has beemposed of large vertically integrated
utilities. Nevertheless, in the last two decadeses® reforms have been implemented
with the aim of disaggregating most utilities inlifferentiated segments. These reforms
have led to different treatments of the separatéigies: generation and supply (retail)
are regarded as potentially competitive marketsjenmtnansmission and distribution
networks are treated as natural monopolies that tabe regulated (see Joskow, 2011).
As Jamasb and Pollitt (2007) point out, from annecoic perspective, the aim of
electricity unbundling is to provide utilities withhcentives to improve their operating
and investment efficiency and to ensure that comessrbenefit from the gains. The
main methods used to achieve these objectivedhanadtentive regulation mechanisms,
which include financial rewards and penalties fbe tfirms linked with their
performance.

Joskow (2011) notes that much of the researchisnséctor has focused on the
competitive markets although the regulated segmamatgde the infrastructure for the
competitive segments and represent an importantiahas the total price paid by final
consumers and they have an important joint effettt eompetitive segments on social
welfare. For these reasons, electricity transmissias played an important role in the
success of liberalised power markets. Electricgjorms have led to the creation of
some bodies to perform the coordination functidreg formerly were internal to the
firms. To deal with this issue and the stressefransmission system after years of
underinvestment, the Federal Energy Regulatory Cesian (FERC) pursued the
implementation of a Standard Market Design and eraged the so-called Regional
Transmission Organizations (RTO) to facilitate @ént trade over wide areas and
transmission investment. According to Greenfield &woka (2011), the RTOs — such
as PJM - provide transmission services but do maet wansmission facilities and they
are not responsible for the maintenance and repaifixed investment costs, of the
transmission facilities over which they direct flev of power. Their essential role is
as independent service provider that administes ttrms and conditions of
transmission services and maintains the short-tekiability of the network.

Despite the importance of RTOs in the overall penfnce of the electricity
system, the transmission utilities and the stractifrthe network charges have a great
effect on network use and its development. FollgnBrunekreeftet al. (2005, p.74-
75), the setting of the charges at an appropratel lis a key issue because it affects
“the locational choices of new generation (and rérgy intensive users), as well as
influencing the bidding behavior of generators, dahd willingness of neighboring
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electricity markets to trade and cooperate”. Assalt, “ideally the structure of network
charges should encouraggthe efficient short-run use of the network (dispaorder
and congestion managemenit); efficient investment in expanding the networik)
efficient signals to guide investment decisionsgeneration and load (where and at
what scale to locate and with what choice of tetdmebase-load, peaking, etciy)
fairness and political feasibility, anl cost-recovery” (Brunekreeét al, 2005, p.75).

There are different regulatory practices acrossatbed to set the total amount
of network charges in the electricity market wharle mostly based on benchmarking,
i.e. on measuring firm’s efficiency against therf& with best practice performance (see
Brophy Haney and Pollitt, 2012). As regulators revar punish firms according to
their (in)efficiency level, the reliability of thesscores is particularly crucial for
regulatory credibility. Any efficiency estimateds to measure the gap between actual
cost (production) and the optimal point on the ¢psbduction) frontier, which must be
estimated from the available data. Published papersge basically employed two
approaches to estimate cost (production) frontidrse first approach includes
parametric techniques that require specifying éiqudar functional form for the cost or
production frontier, such as the stochastic franéipproach (SFA) or ordinary least
squares (OLS). The second approach is the non-pétiandata envelopment analysis
(DEA) which requires fewer assumptions about thapshof the efficiency frontier.
Both parametric and nonparametric techniques haeg& fpros and cons, and the
selection of an appropriate estimation method istettious and may influence the
obtained results and the consequent regulatoryeyatplications (see, for instance,
Coelliet al, 2005).

Despite the relevance of transmission networkfiendlectric power industry is
very difficult to implement a statistical benchmiauk for most of the countries due to
the lack of domestic comparators (Brophy Haney &adlitt, 2012). International
benchmarking can be an alternative to deal witlk thsue, but the regulators face
several problems. Joskow (2011, p.54-55) notes ttmatlayout of the transmission
network depends on countless factors, such asdigtgbution of generators and load,
population density, geographic topography, theibaites and age of the legacy
networks’ components and various environmental ttaimés affecting sitting of new
lines, transformers and substations”. Moreover,reghés no standardization or
homogeneity among countries about the voltage bamiegl between transmission and
distribution networks. For instance, in the UK ti@nsmission network is formed by
elements that run at 275 kV and above, while ireotountries like the U.S. or France
transmission network is formed by elements that albove 60 kV, making an
international comparison a challenging task. Regardhe inputs and outputs that
should be taken into account in an empirical amsalgs efficiency of transmission
systems, Pollitt (1995) pointed out that it migbtdesirable to take every specific factor
of the company into account due to the complexitthe network. Each transmission
system is unique because of the different kindsinpluts that they use and the
environment in which they operate.

By constrast, statistical benchmarking methods hbgen largely used in
electricity distribution to determine the relatigHiciency of individual firms’ operating
costs and service quality compared to their p&&sme countries such Germany,
Nordic countries and Switzerland have a large nundfeutilities. This provides a

% Jamasb and Pollitt (2001) show the most used appes and provide a survey of benchmarking studies
applied mainly in OECD countries.



suitable basis for the use of advanced benchmatk&uithiques and without necessarily
having recourse to international benchmarkings jenerally desirable for regulators to
have a large number of utilities for comparison affetiency benchmarking.

As mentioned above, obtaining reliable (and faireasures of firms’
inefficiency requires controlling for the differeahvironmental conditions under which
each utility operates. This is especially acutbenchmarking because of the financial
implications that this analysis can have over ilhmd and their effect over the whole
network. For this reason, recent studies in elgtgrdistribution have tried to control
for the effect on firms’ performance of several ieowmental factors, such as weather
conditions, across the electricity distribution teys. For instance, Korhonen and
Syrjanen (2003) develop an approach to evaluate ctist-efficiency of Finnish
electricity distribution companies based on Datadimpment Analysis (DEA) paying
attention to environmental variables under whick tompanies operate. Yet al.
(2009) have also highlighted the importance of wershg external factors when
evaluating the effectiveness of regulatory policiesthe UK electricity distribution
industry. These authors show using nine weatherablas that severe weather
conditions tend to increase service interruptioasd this in turn increases costs
associated with replacing the damage equipmentestdring power.

Jamasbet al. (2010 and 2012) also find that weather mattersha UK
distribution network and conclude that weather atslgs should be included as cost
drivers? Using weather and geographic composites, Growiseth. (2012) do not find
a large influence of environmental variables on distribution companies’ efficiency
and the average efficiency rankings. However, ttieceon the cost is remarkable.
Their simulations predict up to 30% lower costathaerage, for utilities that operate in
areas with extremely good environmental conditi@ars] up to 39% higher costs than
average, for utilities that operate in areas wiktreamely bad environmental conditions.
On average, they predict higher costs of about 5%a aesult of hostile weather
conditions.

Finally, Nillesen and Pollitt (2010) have also apgla benchmarking analysis
including environmental conditions to study thefpenance of electricity distribution
companies in the U.S. and correcting those vamalite estimating the potential
efficiency gains. They do not find that companiethwnfavorable conditions are worse
performers.

3. Theoretical model and empirical specification

In this section we introduce the theoretical costal that allows us to analyze
the economic characteristics of the technology,hsas economies of scale or
economies of density, of US electricity transmissfoms. In general terms, the cost
function to be estimated can be written as:

InC=InC(y,np,t) (1)

whereC is a measure of total cosisjs a vector of outputs) measures the network
length,p is a vector of input prices, andstands for the time trend. As usual, if firms

* Their results also suggest that the lack of inoluof variables related to weather conditions rhigh
downward bias the estimated coefficients of otleéevant variables, and, in particular, those assedi
to marginal cost of quality improvements.
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minimize cost, this function should be linearly rmgeneous with respect input prices,
and increasing in outputs.

Our cost variable is total expenditure (i.e. opagaplus capital costs) due to the
presence of possible trade-offs between operatidgcapital expenditures (Giannakis
al. 2005). The literature on electricity networks algggests a positive relationship
between cost and network length, thus the systeenvariable used in our application.
Besides the network length, Ofgem (2011, p.44-46pgnizes the peak demand, the
energy delivered and the age of assets as the rhardal cost drivers in electricity
transmission. All of these variables are includedour cost function except age of
assets as its effect on total cost is not cleader assets imply higher operating costs
but lower capital outlay3.

Economies of scale and density of electricity traission firms can be
computed once equation (1) is estimated. We adso@eonomies of scale with
horizontal system expansion, that is, increases in demartdréigaire enlarging the
current network to meet extra demarthese economies can be then measured by the
sum of cost elasticities with respect to the owgpytand the network length;

dlnC 0 IncC
ES = dlny dlnn (2)

While a value of ES less than one indicates thstemxce of economies of scale,
a value higher than one indicates the existencieafeasing returns to scale. Looking at
the results obtained for US electricity transmisshly Huettner and Landon (1978),
Pollitt (1995) and Dismukest al. (1998) we expect to find economies of scale in our
empirical application.

On the other hand, we associate economies of glendih vertical system
expansion, i.e. expansion in transmitted elecyrid¢itat do not require additional
network. These economies can be measured by thefselasticity of cost with respect
to the outputsy.

__0dIncC
- dlny

ED 3)

In this case, the cost elasticity of network is taken into account, as we are
considering an increase in output levels, given abwial length of the transmission
network.

Measuring gaps between actual costs and efficientnfinimum) costs requires
estimating a cost frontier from the available dafhe stochastic frontier literature
suggests that deviations with respect to the costier cannot be entirely attributed to
inefficiency and hence we must control for otheurses of deviations (i.e. random
noise) to achieve this objective. To capture odmirces of deviations, Aignet al
(1977) proposed using an econometric specificabbrthe cost function (1) that
includes two random terms, measuring respectivatgom noise and inefficiency. This
model can be presented as follows:

In Cit =a+ Xitlﬁ + Vit + Uit (4)

wherei stands for firms antifor time, X;; is a vector of explanatory variablesandf
are parameters to be estimateg;N(0,5%) is the classical symmetric random noise,

®> We included age of assets in our first estimateshis variable was not statistically significant.
® Note that here density is held constant becausk botput levels and network size is expanded
simultaneously.



and u;; is a one-side error term which captures inefficierfeollowing Aigneret al.
(1977), we assume that this term follows a halfamardistribution, i.eu; ~N"(0,a.9).
We also assume that andu;; are not correlated with each other or with the axatory
variables.

An important caveat of this basic model is thataés not allow the examination
of the determinants of firms’ performance, whichthe main issue examined in this
paper, as the inefficiency term in (4) has constamtance. It might also yield biased
estimates of both frontier coefficients and firmesific inefficiency scores (see Caudill
and Ford, 1993j.

There are some models in the stochastic frontierature that permit
incorporating efficiency determinarftsAmong the set of proposed heteroscedastic
models in the literature, we propose estimating adeh that satisfies the so-called
scaling property, which implies that our inefficiency term can be writtes a
deterministic function times a one-sided randomalde that does not depend on any
efficiency determinant. In this casg,can be written as:

Ui = h(mye, ¥) - U, (5)

whereh(-) is a scaling function that always takes positiaugs,m; is a vector of
efficiency determinants, is a vector of parameters to be estimated,uganis a random
term that follows a half-normal distribution witbrstant varianceg®. As equation (5)
implies that our inefficiency termay is distributed as 0,6%;), wheres;; = h(my,y), the
defining feature of models with the scaling propest that firms differ in their mean
efficiencies, but not in the shape of the distribrutof inefficiency. That is, the scaling
property implies that changesnm affect the scale but not the shapeiof

In this modelu;” can be viewed as a measure of “raw” inefficieri@t does not
depend on any observable determinant of firms’ficiehcy. On the other hand, the
scaling functiorh(-) can be interpreted as the portion of total esthaefficiency that
researchers are able to explain with the variaiolelsded inh(-). This function hence
“adjust” the underlying, and unexplained, ineffrody level upwards or downwards due
to the influence of some potential inefficiencyetatinants.

Although it is an empirical question whether ot tiee scaling property should
hold, it has some features that we find attrac{see Wang and Schmidt, 200Epr
instance, we prefer the above multiplicative decositpn ofu;; instead the alternative
additive decomposition of the forog(my,y) = h(m,y) + 1 introduced by Huang and
Liu (1994) and Battese and Coelli (1995) becauseatiditive decomposition can never
actually be a decomposition into independent gsts(mi,y) > 0 requires;; < h(my,y).

In our model, we can decompasgeinto explained and unexplained inefficiency simply
dividing the estimated inefficiency by the estinthtealue of h(-) Moreover, the
interpretation ofy does not depend on the distribution of inefficgnand simple
scaling functions yield simple expressions for #ffect of m; on mean efficiency. In
this sense, if we follow Caudidt al. (1995) and use an exponential scaling function so

" Although the stochastic specification in (4) islealto control for random noise, the presence of
unobserved heterogeneity among observations migist the efficiency measures. Different empirical
strategies have been developed in the literatude# with these problems (see Greene, 2005a, 2005b
However, these strategies do not easily deal véthrdhinants of firms’ performance.

8 For a review of this literature see Kumbhakar badell (2000).

° See Alvarezt al. (2006) for a review of the models that incorportiiie property in the literature on
frontier production functions.
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thath(my,y) = expfni'y), then they are just the derivatives of g with respect tamy,
and have standard interpretations as marginal teffdn addition, if h(my,y) only
includes a time trend as a determinant of inefficie(i.e.m=t), our model is similar to
Battese and Coelli (1992) but using a pooled spatibn for the inefficiency term.

Inserting (5) into (4) and assuming an exponestaling function, the model to
be finally estimated can be written as:

InCy; = a+ Xit'B + vir + exp(my'y) - uj, (6)

4. Data and sample

Although the choice of input and output variablesmn important issue, there is
no clear consensus about the variables that shbaldncluded to describe the
performance of transmission and distribution congmnJamasb and Pollitt (2001)
show the wide range of variables that have beed uséoenchmarking analysis of
electric utilities. They find that the most commased inputs in studies of electric
utilities are operating costs, number of employéessformer capacity, and network
length. Regarding the outputs, the most includethlikes are units of energy delivered,
number of customers, and the size of service area.

We use a panel data set of 59 U.S. electricitystrassion companies for the
period 2001-2009. Most of this data was collectgdidrious members of the EPRG at
the University of Cambridge. That information hadeb requested by the British
regulator, Ofgem, in order to carry out an inteioral benchmarking of electricity and
gas transmission, and gas distribution companid®ré/the transmission operations are
part of a larger utility - also involved in geneoat or distribution - shared costs are
allocated on pro-rata basis. As can be seen iddteappendix, an allocation key based
on the ratio between wages and salaries speaifin fransmission and the total labour
expenses of the utility, were used for the assigrnnoé shared costs to transmission.
The main source of the electricity transmissioradaas the FERC form 1, an annual
report of major electric utilities, and the var@blcollected included the: quantity of
assets, voltage levels by asset, maximum demarad tensity, demand growth,
maturity of service area, age/condition of netwartwork density and flow patterns.

As we have mentioned in Section 3, our cost vagiablTotex. This variable is
the sum of Opex, which includes operation and neagmice expenses incurred by the
company over one year, and Capex, which is the gfuamnual depreciation on capital
assets and the annual return on the balance dhtapi

Following the basic economic theory of productiondathe literature on
electricity networks, we use as explanatory vadalf total cost two types of outputs, a
variable that measures the system size, labourcapdal price, and a time trend.
Regarding our output variableBgak Load(PL) is the maximum peak load from all
months of the year during 60 minutes. While peadlmnight indicate transmission
investment requirements, given a fixed transmisstapacity, the higher annual

1 The original sample collected by the members ef EPRG consisted of 71 U.S. firms for the period
1994-2009 and 14 non-US firms from other countf@sthe period 2005-2009. Following Ofgem’s
(2011, p. 20) report, non-US transmission firmseueot included in the analysis due to data linotadi
The sample was reduced to the last 9 years bedabsar costs in the electric power transmission
industry are only available from 2001 to 2009. Wavéh removed some firms/observations that were
outliers. We have also dropped from the samplevai$elated observations in order to work with an
unbalanced panel data set without discontinuiteess time.
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Electricity Delivered(DE) means the greater use of transmission asggth may
imply higher operating cost.In Figure 1we show the evolution over time of the output
variables divided by Totex, which can be interpiletes partial and observable
productivity (efficiency) measuréé.We can see in this figure a clear negative trend o
the peak loads given the total expenditure of efrch. In the case of electricity
delivered, the temporal pattern of this variablena$ so clear. These graphs give us a
first idea about the negative evolution of theadincy in our sample as the output level
per dollar of cost, decreases, or in other wots,tbtal unit cost per output, increases
over time.

[Insert Figure 1]

Network length(NL) is usually viewed as one of the most importawst drivers
of an electricity network (Jamasb and Pollitt, 20000 measure the network length we
have used pole miles. This variable measures thegam of all transmission lines in
miles regardless of the number of power cablesamh @ower line so it is essentially
a measure of the geographic spread of each compatey.thought about using
circuit miles instead pole miles, but the problefccuit miles is that that variable
refers to the number of power cables on each lin#éiplied by the distance between
two points, butit does not take into account theacity of the cable so it is an
unreliable measure of the physical infrastructure.

Regarding input prices, we include in the cost fiamcalLabour Pricevariable
(LPR) defined as the average annual wage for thetred power transmission and
distribution industry by staté. Regarding theCapital Price variable (KPR), we have
finally used a producer price index for power trarssion, available at state level, as a
proxy for capital pricé? The source of these two variables is the Quar@dygsus of
Employment and Wages from the Bureau of Labor Stesi.

We use 9 variables that are expected to affectsfiperformance and, hence,
they are included as determinants of the efficietgeyn. In particular, we include the
following variables: another time trend, three veatvariables (minimum temperature,
wind and precipitation)® the ratio Capex/Opex and two variables which meaghe
growth of the demand. We gradually introduce thes@ables in the model in order to
examine the robustness of our parameter estimates.

Our weather variables have been obtained from tivéace daily weather
information collected by the National Climatic Dae&nter for the 2001-2009 period.

1 Although the total energy that flows through thgstsm also includes transmission for others
(wheeling), we finally use electricity delivereddagise total energy is highly correlated with pessd|

12 As we have an unbalanced panel of 59 firms, tacti¢ipis figure we have selected those firms that a
observed during the whole sample period, i.e. 884i This avoids comparing different sets of firims
different periods.

13 Unfortunately this information is not availablefiam-level.

“We have estimated our models using several indindsvariables calculated with financial informatio
of the companies. Their coefficients were not stiafilly significant or they even had unreasonable
magnitudes from an economic point of view.

15 We firstly introduced the weather variables in oast function as determinants of the technology, i
of the frontier cost function. These variables meonot significant once our weather variables were
introduced simultaneously as inefficiency determisaFor this reason we include weather only in the
stochastic part of our model as a determinantegfficiency term.

6 We have also tried to include other variablesteelawith the regulation of the sector, like regiona
dummies for the NERC regions, the level of verticaegration and the percentage of own generated
energy that flows through the transmission utilibyt we either found convergence problems when
maximizing the likelihood function or that the @stited coefficients were not statistically signifita
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The files available for the around 3,000 weathati@is located in the U.S. contain
information about: mean, maximum and minimum terapges, precipitation amount,
wind speed, number of days with snow, hail, tormsd@tc. Given the high correlation
among several weather variables, we decided tadecbne variable for each one of
these categorieSiemperaturg TMIN), Precipitation (PRCP) andVind (WIND). The
temperature variable is the annual minimum tempegain Fahrenheit degrees, wind
speed is the average of the daily mean wind spigellsots, and precipitation is the
average of the daily precipitation in inches. Thesather variables are measured at
state-level, not at firm-level. In order to obtaiunique value of each variable, we have
taken the average of each weather station withipadicular state except the
temperature variable which is the minimum dailyyweameasured by any of the above
stations along the year. Then, each utility waso@ated with the state where its
principal office is located. We hereafter assume that more adverse conditippsar
when wind speed and precipitation are high andmmn temperature is small.

As utilities may adapt their operating and investmpractices over time to
prevent power interruptions and to reduce the effé@adverse weather conditions, we
interact our weather variables with the mean ofrétti® of Capex and Opex (COR) for
each firmi over theT; available observations for this firm. We expect a negative
coefficient if investing in Capex is a better sbé@t rather than incurring additional
operational and maintenance costs in dealing vdtieise weather conditions.

Finally we have included two variables that meadine averagesrowth in
Demandfor each firm over time. We distinguish betweesipee growth (POSGR) and
negative growth (NEGR). The coefficients of theseo tvariables should not be
statistically significant if there are not adjustrhe€ost and all inputs can be adjusted
(without cost) from one year to the next. Howeathe electricity industry is highly
intensive in capital with much of the assets beognsunk cost upon investment, we
expect significant coefficients for POSGR and NEQGR.particular, we expect a
positive effect of POSGR on inefficiency indicatitigat utilities tend to anticipate
future increases in the demand by investing intahhat is expected to be efficiently
used in the future, but not in the pres€nitVe expect a negative coefficient NEGR if
there is a negative trend in demand and reduciagidixed input levels is expensive
due to the existence of adjustment costs.

The descriptive statistics of all monetary, physiaiables and environmental
used in the stochastic cost frontiers are showirairie 1

[Insert Table 1]

5. Empirical results

We estimate a Translog cost function. This functoan be interpreted as
second-order approximation to the companies’ ugyawyl cost function. All the
variables are included in the model in logarithrexcept the time trend. Each
explanatory variable is measured in deviations wispect to its mean, so the first-

" We recognise that this is a limitation especialhen transmission companies may cover more than one
state.

8 As Jamasb and Pollitt (2007) note, achieving levgn efficiency improvements can involve short-
term increases in Capex or Opex that may not genémamediate efficiency improvements. In fact,
increases in short-term expenditure can deteridha&tdirms’ short-term relative performance. Thight

in turn discourage firms from efficiency-improvimgyestments that have long-term gains.
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order coefficients can be interpreted as the ctadtieities evaluated at the sample
mean. As usual, homogeneity of degree one in pasesnposed by normalizing cost
and labour price with capital price. Thus, the mated equation can be written as
follows:

Ci _ 1
ln (KPI;“-) - al + Z?’):l 18]9 ln YPlt + EZ?’)::[ 23=1 qu ln yplt ln qut +

puin ()] + A [ GERE)]” + Bt o e (7 +

t+ Uit + Vit (7)

where for notational ease, the vector y standsofgputs and network length, i.e.

y=(PEAK, DE and NL). We show imable 2the estimated parameters using two
alternative specifications for the stochastic pafrtthe model: the basic stochastic
frontier model introduced by ALS which is labeled anodel M1, and several

heteroscedastic stochastic frontier models thdudcinefficiency determinants. We

propose introducing gradually four sets of inefitty determinants in order to see the
robustness of our parameter estimates. These madelsbeled from M2 to M5.

[Insert Table 2]

In general, all models perform quite well as mdsthe first-order coefficients
have the expected sign and their magnitudes aite ge@asonable from a theoretical
point of view. Certainly, the coefficients of th&d outputs are always positive and
statistically different from zero when measuring timcremental costs associated to
either higher maintenance and operational costhemneed of new capital. A similar
statement can be made about the coefficients ot inpces, which are also positive and
statistically significant. The coefficient on thiené trend is negative, which indicates
that costs decrease over time, i.e. there is teahonhange. The estimated coefficients
for these variables maintain the signs and sinvddues as we introduce the blocks of
variables in the variance of the inefficiency term.

In model M2 we also introduce a time trend but asleterminant of the
inefficiency. The coefficient of the time trend fihis case is positive, indicating that
efficiency levels decrease over time. In M3 weadtrce three weather variables. Our
results indicate that weather is an important issuehis industry. Moreover, the
negative sign for the minimum temperature showthaslower minimum temperature
increases cost due to higher levels of inefficientyerage wind speed and average
precipitation have a positive coefficient indicagtingain that more adverse conditions
generate higher levels of inefficiency. In model M4 include the average ratio of
Capex and Opex (COR) interacting with the weatlagrables to catch an idea about the
best strategy to deal with adverse weather comditi@he estimated coefficients have
the opposite sign to those obtained for the isdlateather variables, indicating that, as
expected, that more capital-intensive utilitieg(evith higher capital-to-opex ratios) are
able to mitigate better the effect of unfavourabksather conditions, and hence tend to
be, ceteris paribus more efficient than those utilities using a higlpgoportion of
operating inputs. This result suggests therefoa¢ ithvesting in equipment is a better
strategy than incurring additional operating costs mitigating the effects of
unfavourable weather conditions.

The next set of variables incorporated in modelavib two firm-specific rates of
growth of the demand. We get the expected sigrhefcoefficients for POSGR and
NEGR, indicating as we supposed that utilities amere efficient in stable
environmental conditions or, more specifically, whbe demand is unchanging.
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As the most comprehensive model M5 nests the pusvamnes, we employ a
likelihood ratio test to analyze whether simplerdals are as good as model M5. As it
can be viewed in Table 2, the performed tests aliswio reject models M1 to M4 in
favour of the Model M5. We then use this modelxaraine in detail both the estimated
levels of cost efficiency and the characteristicéhe estimated technology.

In Figure 2we depict the histogram of estimated levels ot efciency. The
average efficiency in our sample is 84.6% using meferred model® Pollitt (1995)
using 1990 data found an average efficiency of 82the total of the companies in his
sample and 88.3% for larger firms. The latter vaneeeds the one that we have found
with our preferred model. This seems to indicatd the performance of the electricity
transmission utilities has not experienced a sigguit improvement from one period to
the next. As we have mentioned in Section 3, thienased inefficiency in our model
can be decomposed into two independent components,explained and the other
unexplained. The latter component can be simplyiobtl dividing the estimated
efficiency scores with the values of the scalingction we obtain the “raw” scores of
inefficiency. The average raw efficiency obtaindterathe correction is almost 98%.
This implies that the inefficiency determinants nmodel M5 explain much of the
estimated inefficiency.

[Insert Figure 2]

We show inFigure 3the temporal evolution of our efficiency scorebkeTgraph
shows that the average level decreases over timeing at 91.7% and finishing at
75.7%. It should be noted that this worsening oh$& performance is also obtained
using more restricted model, such as Model 2 timy ocludes a time trend as an
efficiency determinant and its coefficient is po&tindicating that average inefficiency
rises over time. All estimated models suggest m&iregy divergence in performance
over time. Overall, the estimated evolution in parfance and the lack of convergence
in firms’ inefficiency scores seem to suggest thate is scope for improvements in the
performance of the US electricity transmission eyst

[Insert Figure 3]

Next, we use our preferred Model 5 to examine saim&racteristics of the
estimated technology. Like in previous papers, éetmated elasticities allow us to
measure economies of scale and density, but incéss using more recent data. In
addition, the estimated marginal costs might helgdt prices or guide the design of
incentive regulation schemes.

Figure 4depicts the elasticity of total cost with resperipeak load, delivered
electricity and network length estimated for eabkesvation, sorted in increased order
at the observation-level. Peak load seems to bentyst important cost driver with an
average elasticity equal to 0.56. This figure aBows us to examine the reliability of
our estimated elasticities when we move away frioensample mean. Although the first
derivative of our cost function just provides asffiorder approximation to the
underlying elasticity at the sample mean, most Mag®n-specific elasticities are in a
reasonable order of magnitude, except for the negatlues on the left in two of the

19 Using the ALS model, the average efficiency is9%6. This is lower than the mean value of efficiency
obtained with our preferred heteroscedastic moBelgarding the ranking of firms the correlation
coefficient between the rakings obtained with M3 &5 is also too low as it takes the value of 0.53.
These differences might be taken as an anecddtiree of the biases that might appear in an ecapiri
application when inefficiency determinants are taien into account.
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curves. In these cases, our estimates should bediwith caution as they correspond
to some observations which are far away from thepsa mearf°

[Insert Figure 4]

Adding the first-order coefficients of the two outp we find that the elasticity
of density evaluated at the sample mean is quitéasiin all models, varying from 0.57
to 0.62. These values suggest the existence ofrtamgoeconomies of density in the
electricity transmission industry. That is, givertwork infrastructure, electricity
transmission networks exhibit natural monopoly ebkteristics. Greenfield and Kwoka
(2011) find increasing returns to scale with valbesveen 0.39 and 0.53 for US RTOs
that arises from two types of variation: geograghipansion and demand increase over
a fixed network.

To analyze economies of scale, which involves esijas in both output and
network, we need to add the cost elasticity of neéwvork length to the elasticity of
density. The elasticity of scale evaluated at #ra@e mean in Model 5 is 0.8&igure
5 shows the estimated economies of scale and defusitgll the observations, each
series sorted by increasing order. Most firms ingample exhibit increasing returns to
scale, except teen that indicate decreasing retoresale with a value of the elasticity
higher than one. These results suggest that @gtiiansmission networks still exhibit
natural monopoly characteristics when network igaexied to meet the extra demand.
Using data for 1990, Pollitt (1995) finds, howeveifferent degrees of economies of
scale depending on firms’ size for the US transimissitilities. In particular, he finds
that decreasing returns to scale are more commamail utilities while increasing
returns to scale are more common in medium anck laggnpanies. This seems to be
consistent with the results obtained here, as nsample we only have large firms.
Dismukeset al. (1998) also show that all the NERC reliability imgs in U.S. exhibit
significant economies of scale for the transmisstompanies, while Huettner and
Landon (1978) find that of six expenses categortdy sales expenses exhibits
increasing returns to scale over the whole of tieeosed output range.

[Insert Figure 5]

The following two figures depict the histogramstloé elasticities of density and
scale obtained from our preferred model M5. Thestelgies of density in~igure 6
follow a slightly symmetric and unimodal distribai. The kernel curve and the shadow
box show that the variance of the density elagwitis not too large and most
observations are around the average value, 0.61hé\sost of increasing output given
firms’ network is quite similar in most utilitiesye might conclude that most utilities
use similar strategies to deal with demand expassihen they do not adjust their
networks. However, when we look flatjure 7 the distribution of elasticities of scale is
much more flat, i.e. regardless of the mean vaheyariance of the scale elasticities is
much higher than before. This larger variationdals elasticities seems to indicate that
utilities use different “strategies of growth” whertreases in outputs require enlarging
their network.

[Insert Figure 6]

% For most functional forms (e.g., the Translog tion® there is a fundamental trade-off between
flexibility and theoretical consistency. For insten maintaining global monotonicity (e.g. positive
elasticities and marginal costs) is impossible aitHosing second order flexibility. For examplerBett

et al. (1996) show that the monotonicity requirement ysno means automatically satisfied for most
functional forms, and that violations are frequent.
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[Insert Figure 7]

Figure 8depicts the histogram of the estimated networkteeities. This figure
provides more evidence about the existence ofréifitestrategies of growth as we find
a bimodal distribution. It seems therefore that ocost function actually contains two
different strategies (or technologies) to enlatye network size. Irigure Swe try to
examine more deeply these differences in technoMfg/present in this figure a scatter
plot of the estimated density elasticities agathst elasticities of network. The circles
depicted in this figure simply highlight the twonmentrations of observations that we
have found in the previous histogram. Another ed@ng result is that there is a
positive correlation between both types of elastéisi However, there are again two
groups of firms that are linked in the figure withio trend lines, indicating again the
existence of different strategies. If we look a ttharacteristics of the lower group of
observations, we find that the companies which gl this small group have a low
level of outputs compared to their total costs.

[Insert Figure 8]
[Insert Figure 9]

6. Conclusions

The electricity industry in most developed courstrleas been restructured in
recent decades with the aim of reducing costs, ompg service quality and
encouraging electricity utilities to perform eficitly. The remaining regulated
segments (i.e. transmission and distribution) mevithe infrastructure for the
competitive segments and represent an importantianad the total price paid by final
customers. Despite the fact that electricity trassimn is the baseline for distribution
and commercialization, there is a lack of empirstaidies that analyze both economic
characteristics of the technology and firms’ ing#incy in electricity transmission.

To fill this gap in the literature we have analy#Zgths’ performance in the US
electricity transmission industry for the periodd2€2009. The analysis of the economic
characteristics of the technology and inefficienfyJS utilities relies on the estimation
of several stochastic cost frontiers. Our stochastintier models allow us to identify
determinants of firms’ inefficiency in this indugtrin particular, we have included a
wide range of variables as determinants of firmsfficiency such as weather variables,
a measure of companies’ cost structure and groatibs rof energy demand. Unlike
previous papers, we control for weather conditionse of the most decisive
uncontrollable factors in electricity transportatioby including a set of weather
variables that were gathered specifically for thespnt application.

We have found that there has not been an improvemeverage efficiency in
the US electricity transmission industry over theripd 2001-2009. Moreover,
regardless of the estimated model, our resultcatdithat efficiency has declined (and
diverged) over time, suggesting that regulatorychemarking techniques can identify
room for improvement in performance of the US eleity transmission system.

The estimated coefficients provide useful informratabout firm’s performance
with both policy and managerial implications. Wevéadound using more recent data
than in previous papers that, given network inftagtire, electricity transmission
networks exhibit natural monopoly characteristitis result explains why electricity
transmission is still regulated.
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In efficiency analysis and incentive regulation wflities it is important to
control for the effect of differences in environnenfactors on the performance of
regulated firms. This is particularly important time case of incentive regulation and
benchmarking of electricity networks where the hsswof efficiency analysis have
important financial implications for the firms. this sense, our results clearly indicate
that more adverse conditions generate both higivetd of inefficiency and higher costs
for firms operating in areas with unfavourable weatconditions. Regulators should
then take into account this cost disadvantage itingeefficiency targets within
incentive regulation. We also find that investimgdapital is a better strategy to deal
with adverse weather conditions rather than inogrin additional operating costs. This
might suggest a regulatory framework that favouapital investments to deal with
unfavourable weather conditions.

Finally we have found that, as expected, firmsfquarance gets better when
demand tends to be steady as firms cannot adjestitiputs without cost over time.
This result, combined with the previous finding dhe importance of capital
expenditure to deal with weather conditions, sutggdsat regulators should also take
into account that achieving long-term efficiencypimovements can involve short-term
increases in both capital and operational costs hadce, a deterioration in firms’
short-term relative performance.
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Table 1. Descriptive statistics

Variable Units Mean Max. Min. Std.Dev.
Totex Cost Us$ 144,602,000 667,127,000 20,713,600 120,324,000
Peak Load Output MW 6,173 23,111 380 5,533
Electricity Delivered Output MWh 6,280,310 74,584,700 56,730 8,839,980
Network Length Network Miles 4,064 16,292 1,087 3,253
Annual Salary Input Price US$ 62,075 94,005 34,024 10,523
Producer Price Index Input Price Index 179.05 222.40 155.00 21.35
Minimum Temperature Weather °F -10.35 19.90 -59.80 16.51
Wind Speed Weather Knots 6.84 9.60 4.63 1.01
Precipitation Weather Inches 0.07 0.16 0.01 0.03
Capex/Opex Other Ratio 1.18 5.90 0.13 0.70
Growth in Demand Other % 0.03 244.11 -74.96 17.72
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Table 2. Parameter estimates of the Translog cost function.

M1 M2 M3 M4 M5
(ALS) (M1+Trend) (M2+Weather) (M3+W*COR) (M 4+Growth)
Variable Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio
Constant 12.983 368.18 13.095 241.22 13.137 261.99.145 292,92 13.154 303.05
In PL 0.508 25.13 0.504 19.20 0.550 21.67 0.546 22.50 5560. 22.43
In DE; 0.060 5.03 0.063 3.63 0.065 3.96 0.066 3.97 0.0553.26
In NL; 0.215 8.08 0.223 5.83 0.205 5.99 0.208 6.28 0.203%.79
In (LPR/KPRY) 0.612 6.39 0.582 4.74 0.663 5.55 0.753 6.13 0.716.83
Y (In PLy)? 0.046 1.14 0.049 0.86 0.110 2.09 0.137 2.58 0.128.27
Y (In DEy)? 0.038 280 0.035 2.18 0.034 2.21 0.037 2.35 0.0271..61
Y (In NLy)? 0.319 427 0.297 2.67 0.329 3.42 0.351 3.78 0.33@.50
% (In (LPR/KPRy))? 0.639 140 0.493 0.72 0.145 0.24  -0.030 -0.05 3.0 -0.06
In PL; - In DE; -0.015 -0.87 -0.014 -0.61 -0.029 -1.28 -0.028 31.2 -0.018 -0.78
In PL; - In NL; 0.004 0.11 0.015 0.24 0.009 0.19 0.003 0.07 0.023.44
In PL; - In (LPR/KPRy) -0.117 -0.94 -0.099 -0.53 -0.100 -0.58 -0.161 960. -0.126 -0.75
In DE; - In NL -0.059 -2.64 -0.063 -1.94 -0.053 -1.77  -0.057 91.9 -0.060 -2.06
In DE;; - In (LPR/KPRy) 0.044 0.69 0.005 0.05 0.016 0.20 0.042 0.54 0.0080.10
In NLj; - In (LPR/KPRy) 0.108 0.82 0.090 0.44 0.012 0.07 -0.016 -0.09 03®.0 0.01
t -0.005 -0.73 -0.024 -2.57 -0.025 -2.85 -0.023 852. -0.024 -3.00
Variance of u
Constant -3.040 -7.54 -4.384 -6.15  -5.387 -7.185591  -7.27
t 0.181 3.32 0.306 3.66 0.382 4.30 0.391 4.46
TMIN;; -0.033 -2.61 -0.033 -1.92 -0.034  -1.99
WIND;; 0.757 3.11 0.781 2.63 0.734 2.50
PRCR, 17.672 2.62 18.500 2.34 18.752 2.44
TMIN; - COR 0.075 2.06 0.070 1.90
WIND; - COR -1.299 -2.38 -1.390 -2.49
PRCR, - COR -16.302 -1.12  -11.972 -0.83
POSGR 0.043 2.02
NEGR -0.064  -1.65
Log LF -29.71 -23.22 -5.18 6.31 10.44
Chi-squared LR test 80.291 67.317 31.244 8.263 -
9) (8) (5) (2) -

Note: The unrestricted model in all model selecti®htests is M5. Degrees of freedom in parenthesis
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Figurel.
Annual evolution of outputs divided by Totex

Peak Load/Totex

0.044
B
c 0.042
3
3 0.040
< 0038
o0
(%]
> 0.036
S~
§ 0.034

2001 2003 2005 2007 2009
Year
Electricity Delivered/Totex

0.050
¥ 0.045
>
= 0.040
=
2 0.035

0.030

2001 2003 2005 2007 2009
Year

22



Figure 2.
Histogram of efficiency scores for the firms usthg heteroscedastic model
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Annual evolution of the efficiency for the electtransmission sector
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Figure4.
Elasticities of cost for outputs and network
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Figure®6.
Histogram of elasticities of density
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Figure8.
Histogram of elasticities of network
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APPENDIX

Data appendix A: Variables and definitions from FERC FORM No. 1

Variable Definition FERC pages FERC account names/notes
AK Allocation key (wages) SWTR / (SWTT - SWAG)
SWTR 354-21b Salaries and wages (transmission)
SWTT 354-28b Salaries and wages (total)
SWAG 354-27b Salaries and wages (admin. and general)
OPEX Operational expenditure 100 * (TTE + AK *AGE - EPB - RCE - GAE)) / CPI
TTE 321-112b Total transmission (op. and main.) expenses
TAGE 323-197b Total administrative and general expenses
EPB 323-187b Employee pensions and benefits
RCE 323-189b Regulatory commission expenses
GAE 323-191b General advertising expenses
CAPEX Capital expenditure 100 * (DEP + IR * KBALXCPI

DEP Depreciation DETP + AK * (DEPGP + DEPCP)

DEPTP 336-7b
DEPGP 336-10b
DEPCP 336-11b
KBAL Capital balance OCK - ADEP

OCK Original cost of capital BTP + AK * BGP

BTP 207-58g
BGP 207-99¢g
ADEP  Accumulated depreciation ADTTP + ADTRP + AKRDTGP
ADTTP 219-25¢
ADTRP 219-27c
ADTGP 219-28c

Depreciation (transmission plant)
Depreciation (general plant)
Depreciaton (common plant)

Balance end of year (total transmission plant)
Balance end of year (total general plant)

Accumulated depreciation total (transmission plant)
Accumulated depreciation total (regional plant)
Accumulated depreciation total (general plant)
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TOTEX Totex OPEX + CAPEX

PL Peak Load 401b (d) Peak load (MW)

DE Electricity Delivered 401a-17 (b) MWh (total)

NL Network Length 422 () + (g) Length of transmission lines (miles)
COR Capex / Opex CAPEX / OPEX (average over foneach firm)

GROWTH Growth in Demand [(TE current year - TEEyous year ) / TE previous year] * 100

Data appendix B: Variables from other sources.

Variable Definition Source

LPR Annual Salary Data Quarterly Census of Emplenynand Wages
(from the US Bureau of Labor Statistics)

KPR Producer Price Index US Bureau of Labor Stiat

TMIN Minimum Temperature National Climatic Data@er (NCDC)

WIND Average Wind Speed National Climatic Daten@e (NCDC)

PRCP Average Precipitation National Climatic Daenter (NCDC)

CPI Consumer Price Index International Labouradisation - LABORSTA

IR Interest rate (6%) Nillesen and Pollitt (201066
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