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Abstract 

 
Fixed effects estimators will generally produce imprecise estimates when the data 

contains variables with relatively low within variance. In a production setting, this can 

lead to unreliable estimates of key parameters. These problems carry over to production 

frontiers where technical inefficiency is estimated on the basis of the unit effects (Schmidt 

and Sickles, 1984) or through the use of true FE stochastic frontier (Greene, 2004; 2005). 

Plümper and Troeger (2007) propose what they label a Fixed Effect Vector Decomposition 

(FEVD) estimator which may permit greater precision in estimating variables with low 

within variance and they provide conditions under which their estimator performs better 

than the fixed effects estimator. In this paper we extend the FEVD estimator to a frontier 

setting. This allows the possible advantages of the FEVD estimator to be incorporated into 

Greene’s true FE frontier model. In an empirical application of the estimator we analyze 

the effects of ICT capital on regional productivity in Spain using a balanced panel dataset 

at provincial level over the period 1986-2006. This data contains several variables with 

relatively low within variance, and the FEVD frontier provides much more plausible 

estimates of key parameters than the FE estimator or the true FE frontier estimator.  

 

 
JEL:  C23, O47, R10. 

 

 

Keywords:  Stochastic frontier, fixed effects vector decomposition, ICT, regional 
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1. Introduction 

 

One of the main advantages of using panel data is that researchers can control for 

unobserved heterogeneity across units. Among panel data techniques, the fixed effects 

estimator has proven particularly popular as it permits arbitrary correlation between the 

(time-invariant) unobserved heterogeneity and the time-varying regressors. In the 

efficiency literature, fixed effects estimation of the stochastic frontier has a long tradition 

going back to Schmidt and Sickles (1984). In their model, the “fixed effect” was interpreted 

as a unit-specific inefficiency term. One of the criticisms of this interpretation is that the 

unit-specific term includes not only inefficiency but also any unobserved time-invariant 

cross-unit heterogeneity. To separate unobserved heterogeneity from inefficiency per se, 

Greene (2004) proposed the “true” fixed effects model which basically incorporated unit 

dummy variables into the standard normal-half-normal stochastic frontier model.  

 

While these fixed effects stochastic frontier models make weak assumptions on the unit-

specific effects, in that they can be arbitrarily correlated with the regressors, and have the 

virtue of being relatively easy to implement, they share the same drawbacks as any fixed 

effects model. For example, it is well-known that the effects of time-invariant variables 

cannot be estimated in these models as only within variance is used. Less well-recognized, 

as noted by Plümper and Troeger (2007), is the lack of precision of the FE estimator in 

estimating the effect of variables that have little within variance (“rarely changing” 

variables, in their terminology), which can lead to unreliable point estimates of the 

(deterministic) production function. This in turn will lead to unreliable estimates of 

relative technical inefficiency as this is measured by the distance to an estimated 

production frontier. Moreover, the presence of variables with low within variance is a 

problem likely to be found in many empirical applications using both macro and micro 

data sets in production economics. For instance, macro data sets contain aggregates which 

often move slowly over time. Firm-level data also often contain rarely changing variables, 

such as labour inputs farm data or capital stock in transport or electricity firms.  

 

To address this issue, Plümper and Troeger (2007) proposed, in a non-frontier framework, 

a fixed effects vector decomposition (FEVD) estimator which may provide more precise 

estimates in a root mean-squared error sense than the FE model when estimating the 
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effects of variables with low within variability. While some recent applications of this 

technique have appeared in fields such as sociology, energy and economic psychology, as 

far as we aware there have been no applications as yet to production economics.1 One of 

the contributions of this paper will be to provide an empirical application that allows us to 

check whether the FEVD estimator works in practice in traditional production economics 

analysis. 

 

In addition, and following the steps outlined in Plümper and Troeger (2007), in this paper 

we extend their model to a frontier framework and introduce an FEVD stochastic frontier 

estimator that can be viewed as a three-stage version of the “true” fixed effects frontier 

estimator proposed by Greene (2004). In particular, our estimator takes advantage of the 

insights of the FEVD model to permit an extension of the true FE frontier where estimation 

of rarely-changing variables may be more precise. The model has three stages. In the first 

stage, the true FE frontier is estimated. In the second stage we use the FEVD procedure to 

decompose the estimated unit-specific effects into observable and unobservable 

components. This is achieved by regressing the estimated unit effects from the first stage 

on variables with little or no within variation, thereby taking advantage of between-unit 

information. The estimated residuals from this regression are taken to represent truly 

unobserved unit heterogeneity. Finally, in the third stage the full frontier model without 

the unit effects is estimated by pooled OLS where the regressors include all time-varying 

and time-invariant regressors and the residuals from the second stage.  

 

To illustrate the potential advantages of the FEVD frontier over previous FE models we 

provide an empirical application of our proposed model using production data from 

Spanish provinces. The data set comprises annual observations on the 50 Spanish 

provinces covering the period 1986-2006 and includes information on different types of 

capital (public, private and information and communications technology) and labour 

(skilled and unskilled). This data is particularly appropriate for the objectives of our study 

in that it contains several variables which move relatively slowly over time in the sense 

that have relatively low within-to-between variance ratios. This will render FE estimates 

imprecise and makes a case for an FEVD approach. We estimate an FEVD stochastic 

production frontier in order to check the influence of information and communications 

technology (ICT) capital on productivity and efficiency. Our results show that the FE 

estimator and the true FE frontier yield implausible estimates of key parameters of the 

                                                 
1 See Worrall (2008), Carley (2009) and Boyce (2009) for recent applications of this technique. 
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regional production frontier. When observable heterogeneity is corrected for, the 

estimated parameters using the FEVD frontier are much more in line with expectations.  

 

The contributions of this paper are therefore methodological and empirical. First, we 

extend the FEVD technique to a stochastic frontier framework, introducing an estimator 

which we believe can provide a useful extension to existing FE frontiers when the data 

contain slowly changing variables. Second, at an empirical level there are very few 

applications of the FEVD technique in economics and none to production functions or 

regional productivity.  

 

 

2. The fixed effect vector decomposition model 

 

The attraction of FE models is that they allow for arbitrary correlation between the 

unobserved individual heterogeneity and the observable inputs. The downside is that they 

only use within-unit variation in their estimation, grouping all between-unit variation (i.e., 

unobserved time-invariant heterogeneity across units) into the unit fixed effect, with the 

consequence that time-invariant variables cannot be estimated (Hsiao, 2003). This may or 

may not be a problem depending on the objectives of the study. However, a second 

problem with FE models is that they are inefficient in estimating variables with little 

within variance. Plümper and Troeger (2007) refer to these as “rarely changing” variables, 

providing several examples where within variance would be expected to much smaller 

than between variance. FE models can estimate coefficients for such variables but the 

standard errors will be large as their explanatory power will be captured largely by the 

estimated fixed effects. However, the problem is not just low significance of estimated 

parameters, as “point estimates are also unreliable since the influence of the error on the 

estimated coefficients becomes larger as the inefficiency of the estimator increases” 

(Plümper and Troeger, 2007).  

 

As an alternative to FE, Plümper and Troeger (2007) propose what they label the fixed 

effect vector decomposition (FEVD) estimator, which is based on the FE estimator, and 

they provide conditions under which the FEVD estimator will be preferable to FE. To 

illustrate their procedure, assume we wish to estimate the following provincial production 

function: 

��� = �� + ∑ �	
	�� + ∑ ���� + ��������	��    (1) 
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where the 
 variables are time-varying and include observable inputs such as capital and 

labour, the  variables are time-invariant and would include characteristics such as the 

region to which the province belongs, and ��� is the error term. �� represents individual 

(province) heterogeneity and captures the effect of unobserved time-invariant provincial 

characteristics.  

 

Using the within transformation, the FE estimator removes the individual effects �� and 

the time-invariant variables z.: 

��� − �� = ��� − ��� + �	 ∑ �
	�� − 
	�� + �� ∑ ��� − ��� +�����	�� ���� − ���     (2) 

where  

�� =
1
����� 	,

�

���
				
	� =

1
��
	��,

�

���
				�� =

1
����� 	

�

���
 

Plümper and Troeger (2007) note that the “estimated unit effects” ��� do not equal the unit 

effects �� in the DGP. Instead, denoting the fixed effects estimate of (2) as �	�� the 

estimated unit effects are: 

��� = �� − ∑ �	�� 	
	��	��       (3) 

Thus, the ��� include not only the true unobserved unit-specific effects, ��, but also the 

effect of the observed time-invariant variables, 	, and the unit-means of the time-varying 

inputs, 
	�.  
 

The FEVD procedure proposed by Plümper and Troeger (2007) involves three stages. In 

the first, the FE model (1) is run to obtain estimates of the unit effects, ���. In the second 

stage, these unit effects are regressed on the observed time-invariant and rarely changing 

variables, . In doing so, the unit effects are decomposed into an unexplained part,  �, and 

a part explained by the available between-unit information contained in z: 

��� = ∑ ���� +  �����           (4) 

In the third stage, the full model is run using pooled OLS without the unit effects but 

including the true unobservable component of �� represented by the residual from the 

second-stage regression,  �: 

��� = � + ∑ �	
	�� +∑ ���� + ! � + ��������	��             (5) 



5 
 

While the z variables may have been correlated with ��, they are uncorrelated with  � by 

assumption.  

 

A key issue here is what variables to include in the  vector in the second stage. Strictly 

time-invariant characteristics will obviously be included. Variables with sufficiently low 

within-variance should also be included but identifying such variables may not be so 

obvious. Plümper and Troeger (2007) carry out Monte Carlo simulations to provide the 

conditions under which a variable should be included in the second stage. Using the root 

mean squared error as their criterion, they find that the decision to treat a rarely changing 

variable as time-varying (
) or time-invariant () depends on the correlation between the 

variable and the unobserved heterogeneity and the ratio of the between to within 

variance. In general, for a given correlation, the greater the between-to-within ratio, the 

better the relative performance of the FEVD estimator. For a correlation of 0.3 between 

the variable and the unit heterogeneity, a between-to-within ratio of approximately 1.7 is 

sufficient for the FEVD estimator to be superior to FE. When the correlation rises to 0.5, 

the between-to-within ratio rises to about 2.8. While the correlation between the variable 

and the unit heterogeneity is unobservable, the inclusion of additional variables in  will 

reduce the potential for correlation, and Plümper and Troeger (2007) suggest that a 

between-to-within ratio of 2.8 is sufficient to justify the inclusion of the variable in 

question in the second stage. Moreover, even the within variance is large, as long as the 

between variance is much larger the FEVD was found to perform better on average than 

FE (though the absolute advantage in reliability will be smaller).  

Recent research has raised questions about the validity of the FEVD model when only 

time-invariant variables are included in the second stage. In particular, Breusch et al. 

(2010) and Greene (2011) have shown that in this case the FEVD estimator simply 

reproduces the fixed effects estimates for the time-varying variables and produces 

spurious efficiency gains. On this basis, the FEVD estimator becomes a useful tool only 

when slowly changing variables are included in the second stage, which will be the case in 

our empirical application. Indeed, it is the very presence of slowly changing variables and 

the fact that their estimates in a FE setting can be imprecise in a mean-squared error 

(MSE) sense that may justify the use of the FEVD as a potentially interesting alternative 

estimator. At issue here is a trade-off between bias and efficiency. The FE estimator is 

consistent, as rarely changing variables are still time-varying, but will have high variance. 

The FEVD estimator, on the other hand, is biased but has low variance and under the 
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conditions discussed above it will be more reliable than the consistent but high-variance 

FE estimator.2  

 

On the other hand, Greene et al. (2010) show that when the unit means of all the time-

varying variables are included in the second stage the FEVD reproduces the OLS estimates 

of the time-varying and time-invariant parameters. This provides an alternative 

interpretation of the FEVD estimator, i.e. as we incorporate the unit means of the rarely-

changing variables we move away from FE towards OLS. The importance of the between-

to-within variance as a criterion for the inclusion of time-varying variables in the second 

stage becomes clear under this interpretation as the aim is to maximize the use of between 

variation for those variables with relatively low within variation. 

 

Yet another alternative is to use the Hausman and Taylor (1981) instrumental variable 

approach. Breusch et al. (2010) provide an IV interpretation of the FEVD in a time-

invariant variable context (i.e., without rarely-changing variables) and argue that the 

Hausman-Taylor estimator is the most relevant direct competitor with the FEVD 

estimator. On the basis of a Monte-Carlo study they conclude that neither estimator 

completely dominates the other in a MSE sense, with FEVD performing better when 

endogeneity is not too severe. Greene (2011), on the other hand, sees no benefit to the 

FEVD approach in the time-invariant case but points to the comparison with Hausman-

Taylor as being of possible relevance in the presence of rarely-changing variables. In any 

case, the performance of the Hausman-Taylor estimator will depend on the availability of 

enough time-varying exogenous variables in the model and the quality of the instruments 

available. There is also the difficulty of deciding which variables to treat as endogenous.3  

 

 

3. Efficiency measurement in an FEVD framework 

 

Fixed effect estimation of the frontier model was introduced by Schmidt and Sickles 

(1984). In a production function setting, the model can be written as: 

                                                 
2 In Monte Carlo studies, Plümper and Troeger (2007) found that the FEVD estimator consistently 

outperformed both RE and OLS, so we will not consider these estimators.  

3 Note that when none of the time-invariant variables are endogenous and all the time-varying 

variables are permitted to be endogenous, the FEVD and Hausman-Taylor estimators are equivalent 

– see Breusch et al. (2010).  
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��� = � +∑ �	
	�� + "�� 	−	#��	��

= �� + ∑ �	
	�� + "���	��
    (6) 

where "�� is a symmetric random error term, #� ≥ 0 represents technical inefficiency, 

�� = � − #� and the technical inefficiency is estimated as #�� = max)��*)� − �*). 
 

In this model the #� are treated as unit-specific constants and the model can be estimated 

by the usual fixed effects (FE) estimator or within transformation. In an FEVD framework 

this normalization can be carried out using either the original fixed effects obtained in the 

first stage or using the adjusted fixed effects, i.e. the residuals from the second stage. As 

the first-stage fixed effects capture time-invariant regressors and the unit-mean effects of 

time-varying inputs, they cannot be interpreted as “pure” efficiency measures. Hence, the 

second-stage fixed effect should be used. The lower the within variance of inputs, the 

higher will be the differences between the estimated first-stage and second-stage technical 

inefficiency scores. 

 

While this model has the advantage that there is no need to assume that the unit-specific 

effects (including technical inefficiency) are uncorrelated with the explanatory variables, 

this model has some well-known restrictive features (Greene, 2004). First, inefficiency is 

time-invariant, which may not be plausible for “long” data sets. Second, and as seen above, 

the #� terms will include not only inefficiency but also any time-invariant heterogeneity.  

 

To relax these restrictions, Greene (2004, 2005) proposed the introduction of unit-specific 

constant terms in the stochastic frontier model. This “true” fixed effects model can be 

written: 

��� = �� + ∑ �	
	�� + "�� 	−	#���	��      (7) 

where it is commonly assumed that the symmetric random noise term, "��, follows a 

normal distribution and the asymmetric inefficiency term follows a half-normal 

distribution, i.e., 	"��~,�0, -./� and #��~,0�0, -1/�. In this model, inefficiency can now be 

seen to vary over time and is separated from unobserved heterogeneity.  

 

The discussion in the previous section suggests that the FE frontier and true FE frontier 

models may yield imprecise parameter estimates in the presence of slowly changing 

variables and possibly misleading inference. Moreover, these frontier models do not allow 

us to estimate the effects of potentially interesting time-invariant variables. An alternative 
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strategy would be to use a random effects (RE) specification. Heterogeneity bias can be 

controlled, for example, by the Mundlak (1978) transformation and a true random effects 

stochastic frontier using this transformation has been proposed by Farsi et al. (2005a, 

2005b). However, for linear models the Mundlak transformation yields identical estimates 

to FE4 so that it will not solve the problems that can be expected to arise in a FE setting 

with rarely changing variables. 

 

Adapting the FEVD model to a stochastic frontier framework provides a potential solution 

to the problem of rarely changing variables and allows the incorporation of time-invariant 

variables, without the need for deciding on appropriate instrumental variables. To 

incorporate technical inefficiency when slowly changing variables are present, it seems 

natural therefore to extend the FEVD model into a stochastic frontier framework.  

 

To estimate this FEVD stochastic frontier, in the first stage we estimate the true FE frontier 

in order to separate unobserved heterogeneity from inefficiency per se. In the second 

stage the estimated fixed effects are regressed on the time-invariant and rarely changing 

variables to decompose heterogeneity into its observable and truly unobserved 

components, the latter represented by the estimated error from this second stage 

regression. Finally, in the third stage we estimate the full stochastic frontier model without 

individual effects, including all time-varying and time invariant variables and the error 

term from the second stage. We now turn to our empirical illustration. 

 

 

4. ICT and regional productivity: data and empirical specifications 

 

The importance of ICT capital in productivity growth has been highlighted by several 

papers in the literature and ICT capital has been identified as a key source of the 

differences between US and European productivity (Jorgenson and Stiroh, 2000; Oliner 

and Sichel, 2000; Stiroh, 2002; Timmer and Van Ark, 2005). From a regional perspective, 

ICT capital can be expected to influence productivity and economic growth in different 

ways depending on the region considered. Barrios et al. (2007) point out that technical 

progress takes place fundamentally in high-tech sectors so that the higher the share of 

ICT-producing industries in regional production, the higher the impact of ICT on 

productivity and thereby on economic growth. Moreover, in its role as a capital input, the 

level of ICT capital determines the productive capacity of most sectors of the economy and 

                                                 
4 See Hsiao (2003) for a proof. 
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affects the production processes of manufacturing, services and the primary sector. This 

implies that the share of ICT capital in total capital will affect productivity (Mas and 

Quesada, 2005; Barrios et al., 2007; Quesada, 2008). 

 

One of the most common approaches to analysing the effect of ICT on productivity has 

been to estimate a Cobb-Douglas production function and a large body of literature now 

exists, particularly at firm and firm and industry level though far less at a macro level.5 

Very few papers at any level of disaggregation have used a stochastic frontier approach, 

though there have been some recent studies at country-level (Lin, 2009; Chen and Lin, 

2009). At a regional level, the only studies that we are aware of are those by de la Fuente 

(2009) and Corrales (2009), both for Spain. De la Fuente (2009) estimates Cobb-Douglas 

and translog production functions to measure the impact of ICT on productivity for the 17 

Spanish regions over the period 1977-2003. Corrales (2009) estimates translog stochastic 

frontiers using ICT capital as a determinant of technical efficiency for the 50 Spanish 

provinces, using many of the same variables we use in our study 

  

The dataset consists of a balanced panel of annual observations on the fifty Spanish 

provinces covering the period 1986-2006. The output and input variables are as follows. 

Output (Y), is measured by real gross value added (thousands of euro, year 2000), 

provided by the Spanish National Statistics Institute (INE). The inputs used are public 

capital in infrastructures, labour, human capital, and non-residential private capital. 

Human capital is included in the production function as there is wide evidence of the 

complementary of skills and technology (see, e.g., Machin and van Reenan, 1998; also, 

Bresnahan et al., 2002, report a strong correlation and productive complementarities 

between IT and human capital). Moreover, in previous studies human capital has been 

found to have a significant role in regional productivity in Spain (see, e.g., Gumbau-Albert 

and Maudos, 2006). Human Capital (HC) is measured by the percentage of workers with 

post-secondary level studies as reported by the INE. Labour (L) is measured in number of 

workers and the data comes from the Labour Force Survey carried out by the INE. The 

data on infrastructures (INF) and private capital come from Mas et al. (2009). Non-

residential private capital is disaggregated into non-ICT capital (K) and ICT capital (IT). 

The ICT capital series was elaborated from INE data and corresponds to capital 

expenditure on software, hardware and telecommunications. Some descriptive statistics 

are provided in Table 1 below. 

                                                 
5 See Draca et al. (2007) for a comprehensive survey of studies at firm, industry and macro levels.  
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INSERT TABLE 1 HERE 

This dataset has several advantages for our purposes. First, detailed data on capital 

disaggregated into public and private, and into ICT and non-ICT capital, are available at 

regional level and sub-regional (provincial) level for Spain covering a relatively long time 

period. Second, Spain is a large country and quite heterogeneous in geographical, cultural 

and economic terms; moreover, its Autonomous Communities (regions) have assumed an 

increasing role in policy-making over recent decades, complementing and at times 

substituting the central government in key areas such as health, education and innovation. 

Regional heterogeneity and the different policies carried out at this level by the 

governments of the Autonomous Communities may therefore be expected to affect the 

productivity of a province.6 This would make it desirable to include this time-invariant 

variable (i.e., the Autonomous Community to which a province belongs) in a provincial 

production function, something which cannot be done in a fixed effects frontier but which 

can be done with an FEVD frontier. Moreover, this variable would be an obvious candidate 

to explain at least part of the provincial heterogeneity in the second stage of the FEVD 

procedure. Finally, despite the level of disaggregation of the data, they remain “macro” 

data, and it can be expected that some of the variables will change relatively slowly over 

time. This would argue in favour of an FEVD treatment as the FE provincial production 

frontier would be likely, in light of the discussion in the last section, to yield imprecise 

point estimates, with the fixed effects soaking up part of the explanatory of these 

variables. 

 

Our full model is a fixed effects Cobb-Douglas provincial production frontier, which after 

taking logs can be expressed as: 

ln ��� = �� + �4 ln 5,6�� + �7 ln 8�� + �9: ln;<�� + �� ln=�� + �>� ln 5��� + ��?�� + ���   (8) 

where the �� are the individual province fixed effects captured by N dummy variables, the 

β′s are parameters to be estimated and the Rmi are regional dummy variables which takes 

the value 1 if the province i is in Autonomous Community m (m = 2, ... , 17), and 0 

otherwise. As these are time-invariant, they cannot be estimated with the FE estimator but 

can be estimated with an FEVD frontier. As usual, the error term ��� is decomposed into 

                                                 
6 Quesada (2008) lists some examples of regional-level features that would have an impact on the 

effectiveness of regional technology and innovation policies, including the strong industrial 

tradition of Autonomous Communities such as the Basque Country and Catalonia in capital goods 

and the Valencian Community in consumer goods, the existence of networks of technological or 

research institutes, the strength of regional employer associations, the availability of UE structural 

funds or the system of financing in an Autonomous Community.   
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two components, namely a symmetric random noise term, "��, for which we assume 

"��~,�0, -./�, and an asymmetric term, #�� ≥ 0, representing technical inefficiency.  

 

We will estimate two versions of the stochastic frontier model. The first assumes that 

technical inefficiency follows a half-normal distribution, i.e. #��~,0�0, -1/�, which is the 

"true" fixed effects frontier proposed by Greene (2004, 2005). We then estimate the true 

fixed effects frontier by modelling the inefficiency term as a function of a series of 

variables, i.e. we assume that #��~,0@0, -1/ ∙ B�C��; !�E where C is a vector of variables 

that explains inefficiency and !	is a set of parameters to be estimated (Caudill et al., 1995). 

Both versions of the true fixed effects frontier are then compared to their equivalent FEVD 

frontiers using the procedure outlined in the last section.  

 

 

5. Results and discussion 

 

The estimates of the various versions of the provincial production frontier are presented 

in Table 2 below. A time trend (t) and its square have been included in the specifications to 

capture disembodied technical progress. The first two columns show the FE production 

function and its corresponding FEVD production function. The estimates of the FE model 

highlight the problems associated with this estimator when there is relatively little within 

variation. In particular, the coefficient on private capital (K) is not significant and takes a 

negative value. The labour coefficient is also quite low and the human capital coefficient is 

only significant at the 10% level, and the overall scale elasticity is a mere 0.46. These 

results clearly illustrate the imprecision of the FE estimator in the presence of slowly-

changing variables.7  

 

INSERT TABLE 2 HERE 

 

The FE estimator serves as the first stage of the FEVD production function. In the second 

stage (equation 4), the estimated provincial effects are regressed on the time-invariant 

and rarely changing variables, . For the components of  we use the regional 

(Autonomous Community) dummies and the inputs with between-to-within variance 

ratios of at least 1.7 as reported in Table 1, namely public infrastructure (INF), private 

                                                 
7 We also carried estimations using the Hausman-Taylor estimator, allowing different combinations 

of time-varying variables to be endogeneous. None of the estimations performed well, with the 

private capital again generally coming out with a negative coefficient. We do not report these 

estimates here but they can be made available on request.  
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capital (K) and labour (L). The results from the second stage regressions for the FE 

estimator are reported in the first two columns of Table 3, and some comments are in 

order. The coefficients on the infrastructure, capital and labour variables are all highly 

significant, indicating a correlation between these variables and the unit effects which 

would render a random effects estimator inconsistent and justify the use of a fixed effects 

approach.8 Also, the majority of the regional dummies are highly significant and therefore 

explain part of the observable heterogeneity in the estimated fixed effects. It turns out that 

the rarely changing variables (i.e., the provincial means of the infrastructure, capital and 

labour variables) account for the greatest share of the observable heterogeneity. The 

results from this second stage regression imply that the unit effects in the first stage FE 

regressions will have indeed soaked up a considerable amount of the explanatory power 

of these three variables. The extent of this will become apparent in the results from the 

third stage regression but before turning to these we first focus on the implications of 

slowly-changing variables on efficiency measurement using the estimated unit effects as 

proposed by Schmidt and Sickles (1984). 

 

Figure 1 shows the estimated unit effects from the FE estimator and the unit effects having 

controlled for observable heterogeneity in the second stage regression of the FEVD 

procedure. Two series of second stage FEVD unit effects are presented. The first are 

partially-adjusted effects in the sense that they are the unit effects only the rarely 

changing variables but not the regional dummies are included in the regression. The 

second are the FEVD fully-adjusted unit effects, where both the rarely changing variable 

and the regional dummies are included (i.e., the first regression reported in Table 3). The 

provinces are ordered according to the size of the FE unit effect. The corresponding 

efficiency indices calculated on the basis of these estimated unit effects following Schmidt 

and Sickles (1984) are presented in Figure 2.  

 

Figure 1 shows that the unit effects estimated by the FE model (Within) vary over a much 

wider range than those of the second stage FEVD regressions. More specifically, the 

estimated FE (within) unit effects range from 14.57 to 17.07 (standard deviation = 0.52), 

whereas the partially-adjusted FEVD effects range from 15.51 to 15.79 (standard 

deviation = 0.13) and the fully-adjusted FEVD effects from 15.57 to 15.68 (standard 

deviation = 0.04). This is consistent with equation (3), which showed that the estimated 

unit effects in the FE model include observable heterogeneity in the form of time invariant 

                                                 
8 This was indeed confirmed by a Hausman test, which yielded a chi-squared statistic of 310.6, 

soundly rejecting the random effects model. 
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variables and the unit means of the time-variant inputs. Eliminating these in the FEVD 

second stage greatly reduces the variance of the estimated unit effects. Note, moreover, 

that the partially-adjusted and fully-adjusted series of unit effects are quite similar, 

highlighting the observation made above that the rarely changing variables accounted for 

most of the observable heterogeneity. When we decompose the full change in the 

estimated unit effects into the part due to the rarely changing variables and that due to the 

effect of the time-invariant regional dummies, our calculations showed that the rarely 

changing variables accounted for an average over provinces of 75% of the overall change 

in the estimated unit effects.  

 

As expected, this has a profound impact on the efficiency indices calculated from these 

unit effects.9 Figure 2 shows that the FE efficiency indices are implausibly low for the 

majority of provinces. Indeed, the minimum value was a mere 0.08 and the mean was only 

0.24 (standard deviation = 0.17). Correcting the unit effects for the rarely changing 

variables substantially increases the efficiency indices: the partially-adjusted FEVD 

inefficiency indices had a minimum value of 0.52 and a mean of 0.76, more than three 

times higher than the mean of the FE indices (standard deviation = 0.09). Including the 

regional dummies to further control for observable heterogeneity leads to even higher 

indices: the fully-adjusted FEVD indices had a mean efficiency of 0.90 and a minimum of 

0.83 (standard deviation = 0.04). Overall, the FEVD efficiency indices are more in line with 

what we would expect for the Spanish provinces. While Spain is a large and heterogeneous 

country and we might expect to see differences across provinces’ efficiency levels, it is a 

developed country with a relatively homogeneous education system and good 

communications. There should be a relatively low dispersion in efficiency levels as a 

consequence.   

 

The results from the third stage regressions of the full FEVD estimator (equations 5 and 8) 

where the unit effects have been replaced by the estimated residual from the second stage 

( ) are shown in the second column of Table 2. The parameter estimates show a 

substantial improvement on those from the FE estimators. In particular, the coefficient on 

private capital is now positive and of plausible magnitude and the coefficient on labour is 

much more representative of labour’s share in national income. The human capital 

variable also gains substantially in size and significance. Indeed, all the coefficients are 

now significant with p-values of well below 0.01. The effect of the Autonomous 

                                                 
9 As the production function is estimated in logs, the technical efficiency indices, 	#�� , are estimated 

as #�� = F
GH−�IJ
����� − ����K 
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Community can also be included and with the exception of one, all of these regional 

dummies were highly significant.  

 

While the estimated parameters in the FEVD model are all highly significant, a word of 

caution is warranted at this point. In the case where only time-invariant variables are 

included in the second stage, Greene (2010) and Breusch et al. (2010) have shown that the 

FEVD standard errors are lower than those of the fixed-effects model to which it collapses 

and are underestimated. It is not clear yet whether and how any adjustment should be 

made to the standard errors in the rarely-changing variable case and this will doubtless be 

a subject of debate in the future. In our empirical model, it can be seen that the standard 

errors are almost identical to those from the fixed effects model and that gains in precision 

have arisen from more plausible parameter estimates, not from greatly reduced standard 

errors.   

 

We now turn to the stochastic frontier specifications. The true FE frontier estimates for 

the standard normal-half-normal model where the variance of inefficiency is 

homoskedastic (Model 1) are shown in the third column of Table 2 and it can be seen that 

they quite similar to the estimates of the FE estimator. Thus, while the human capital 

coefficient gains significance, the private capital coefficient remains insignificant and 

negative and the labour coefficient is even slightly lower than the FE estimate. The true FE 

frontier serves as the first stage of the FEVD frontier estimator. The second stage 

regression estimates, reported in Table 3, are virtually identical to those of the FE model. 

The third stage estimates are shown in the fourth column of Table 2 and the parameter 

estimates are again very similar to those of the FEVD estimator (column two), being much 

more plausible than those of the true FE frontier.  

 

Focusing on the contribution of ICT capital, we see that the coefficient is positive and 

highly statistically significant in all models, implying that greater intensity in ICT 

expenditure shifts the provincial production frontier upwards and raises productivity. The 

output elasticities of ICT capital are all close to 0.11 except for the true FEVD frontier 

(Model 1), for which the figure is 0.061. These elasticities are in line with those found in 

the previous literature. For example, de la Fuente (2009) estimated a series of production 

functions for the Spanish regions and reports output elasticities of ICT capital ranging 

from 0.062 to 0.122. At a country level, Dewan and Kraemer (2000), also using Cobb-

Douglas specifications, report yearly output elasticities for developed countries for the 

period 1985-1993 with a range from 0.080 to 0.117 (see their Table 9). In a meta-study, 
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Stiroh (2004) found a mean across studies of 0.05. However, he also estimated different 

Cobb-Douglas production functions for a data set of 58 U.S. industries. When using value 

added as output (as we do) he found an output elasticity of 0.114, very similar to ours.10  

 

The estimated parameters of the input variables are not the only differences between the 

true FE frontier and the FEVD frontier. When we estimated the true FE frontier we found 

evidence of the existence of technical inefficiency, as the hypothesis that -1/ = 0 was 

rejected. The average of the efficiency scores was 0.975. However, after adjusting the unit 

effects for observable heterogeneity in the FEVD frontier model the hypothesis of no 

technical inefficiency could not be rejected. Thus, taking account of observable 

heterogeneity can lead to different conclusions about the existence of technical 

inefficiency 

 

The final two models reported in Table 2 are the true FE and FEVD stochastic frontiers 

where explanatory variables are included for the variance of the efficiency term following 

Caudill et al. (1995). We consider two explanatory variables. The first of these is a 

synthetic index of human capital (IKH) reported by IVIE-Fundación Bancaja based on the 

education level and experience of the provincial population and measures how many 

equivalent workers with no human capital would be necessary to achieve the productive 

capacity of the actual occupied provincial workforce (see Serrano and Soler, 2008). Note 

that this is more general indicator of human capital than the variable we used in the 

deterministic part of the production frontier. The second variable is the ratio of ICT capital 

to total capital (ITIC). A priori, we would expect both of these variables to improve 

efficiency.  

 

As can be seen from the last two columns of Table 2, the input coefficients in these 

heteroskedastic frontier models are quite similar to their homoskedastic (standard 

normal-half normal) equivalents, with the FEVD frontier again yielding more reliable 

estimates. These models produce some interesting results. Note first that technical 

inefficiency was found to be present in both heteroskedastic frontiers. We are using the 

ICT share and the human capital index to model the variance of technical inefficiency, so 

that a positive (negative) coefficient implies that the variable increases (reduces) technical 

inefficiency. In both versions of the model (true FE frontier and FEVD frontier), human 

                                                 
10 Interestingly, his other output elasticities were also very similar to ours for the value added 

output. His elasticity of labour was 0.606 and that of non-ICT capital was 0.295, very close to 

revenue share and to our FEVD frontier estimates. See Stiroh (2004), Table 5. 
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capital is found to reduce inefficiency, although in the FEVD frontier this effect loses 

significance. The share of ICT capital, on the other hand, is found to increase technical 

inefficiency in both models, though this effect is only significant in the FEVD frontier. 

Together with the fact that the sign of ICT in the deterministic part of the frontier is 

positive, this would imply that increased ICT capital enables provinces to attain a higher 

level of production but that they are not capable of taking full advantage of this. That is, 

greater ICT capital shifts the frontier upwards but as the share of ICT capital increases, the 

provinces produce at a greater distance from the frontier.  

 

With regard to the technical efficiency estimates, the average efficiency scores for the 

heteroskedastic true FE and FEVD frontiers were 0.956 and 0.974 with minimum values of 

0.814 and 0.799. It should be noted that although the average efficiency is quite similar in 

both models, the true FE and FEVD models yield very different efficiency scores. This is 

illustrated in Figure 3 where the average efficiency indices for the provinces are depicted. 

The difference between the models in terms of the provincial ranking according to the 

efficiency estimates which can be seen in the graph are underlined by a Spearman rank 

correlation coefficient of 0.109, a quite small value which moreover is not significantly 

different from zero (p-value = 0.22). This outcome is quite relevant as it casts doubts about 

the plausibility of the individual efficiency scores obtained in the first stage of our 

procedure (i.e., the true FE frontier). Indeed, if we conclude that some of the estimated 

parameters of the frontier using the true FE are not reasonable from an economic point of 

view (for instance, our true FE production frontier is decreasing in private capital), we 

should also conclude that the individual efficiency scores obtained from this frontier are 

implausible. The second and third stages of our procedure will “correct” these efficiency 

scores as they are computed using more reasonable estimates (from an economic point of 

view) of the production frontier. The small rank correlation indicates that the implausible 

estimates of the frontier using the true FE model generate very different efficiency 

rankings.   

 

 

6. Conclusions 

 

In this paper we have proposed an FEVD stochastic frontier based on the work of Plümper 

and Troeger (2007) and which can be interpreted as an extension of the true FE frontier 

which potentially permits more precise parameter estimates in the presence of slowly-

changing variables. In an empirical application to Spanish regional data, we find that the 
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presence of slowly changing variables, defined as those with a high ratio of between-to-

within variance, yields implausible estimates of the parameters of a production estimated 

using the FE estimator. The same occurs when estimating stochastic production frontiers 

when the true FE estimator is used. The estimates of the FEVD estimator and the FEVD 

frontiers, on the other hand, are found to be much more reasonable from an economic 

point of view. Although the average efficiency scores for the true FE and FEVD frontiers 

were quite similar, they yield very different efficiency rankings. The second and third 

stages of our procedure will “correct” these efficiency scores as they are computed using 

more reasonable estimates of the production frontier. 

 

Many data sets, especially those using macro data, can be expected to contain rarely 

changing variables and FE estimators will therefore be likely to yield poor estimates. This 

may lead researchers to opt for random effects estimators, possibly correcting for 

endogeneity by using techniques such as the Hausman-Taylor estimator or the Mundlak 

transformation. However, these estimators will not deal with the problems associated 

with slowly changing variables and can be expected to provide unreliable estimates of 

production frontiers. We believe that the FEVD frontier has the potential to provide a 

valuable alternative to true random effects and true fixed effects frontiers for researchers 

whose data includes variables with much greater between than within variance. Moreover, 

the conditions under which the FEVD estimator can be expected to perform better than FE, 

based on the ratio of between-to-within variance, are easily checked. 

 

We have illustrated the advantages of the FEVD frontier model with an empirical 

application using production data from Spanish provinces where we investigate the effect 

of ICT capital on regional productivity.  We find that increased use of ICT capital shifts the 

frontier upwards, but as the share of ICT capital in total capital increases, the provinces 

produce at a greater distance from the frontier i.e., we find that they are not capable of 

taking full advantage of the possibilities offered by ICT capital. To confirm these results, 

future research should be carried out using other data sets and/or carrying out Monte 

Carlo experiments to compare different estimators in non-linear models such us 

traditional stochastic frontiers.  

  



18 
 

References 

 

Barrios, S., Mas, M., Navajas, E. and J. Quesada (2007). “Mapping the ICT in EU regions: 

Location, employment, factors of attractiveness and economic impact.” JRC Scientific and 

Technical Reports, European Commission. 

Boyce, C.J. (2009). “Understanding fixed effects in human well-being.” Journal of Economic 

Psychology, doi: 10.1016/j.joep.2009.08.009. 

Bresnahan, T.F., Brynjolfsson, E. and L. Hitt (2002). “Information technology, workplace 

organization, and the demand for skilled labor: Firm-level evidence.” Quarterly Journal of 

Economics 117, 339-376. 

Breusch, T., Ward, M.B., Nguyen, H. and T. Kompas (2010). “On the fixed-effects vector 

decomposition.” MPRA Paper No. 21452. Online at http://mpra.ub.uni-

muenchen.de/21452/ 

Carley, S. (2009). “State renewable energy electricity policies: An empirical evaluation of 

effectiveness.” Energy Policy 37, 3071-3081. 

Caudill, S.B., Ford, J.M. and D.M. Gropper (1995). “Frontier estimation and firm-specific 

inefficiency measures in the presence of heteroskedasticity.” Journal of Business Economics 

and Statistics 13, 105-111. 

Chen, Y.H. and W.T. Lin (2009). “Analyzing the relationships between information 

technology, inputs substitution and national characteristics based on CES stochastic 

frontier production models.” International Journal of Production Economics 120, 552-569. 

Dewan, S. and K.L. Kraemer (2000). “Information technology and productivity: Evidence 

from country-level data.” Management Science 46, 548-562. 

Draca, M., Sadun, R. and J. van Reenen (2007). “Productivity and ICTs: A review of the 

evidence.” In Mansell, R., Avgerou, C., Quah, D. and R. Silverstone (eds): The Oxford 

Handbook of Information and Communication Technologies. Oxford University Press. 

Farsi, M., Filipini, M. and W. Greene (2005a). “Efficiency measurement in network 

industries: Application to the Swiss railway companies.” Journal of Regulatory Economics 

28, 69-90. 

Farsi, M., Filipini, M. and M. Kuenzle (2005b). “Unobserved heterogeneity in stochastic cost 

frontier models: An application to Swiss nursing homes.” Applied Economics 37, 2127-

2141. 

Greene, W. (2004). "Distinguishing between heterogeneity and inefficiency: Stochastic 

frontier analysis of the World Health Organization's panel data on National Health Care 

Systems." Health Economics 13, 959-980. 



19 
 

Greene, W. (2005). "Reconsidering heterogeneity in panel data estimators of the stochastic 

frontier models." Journal of Econometrics 126, 269-303. 

Greene, W. (2011). “Fixed effects vector decomposition: A magical solution to the problem 

of time-invariant variables in fixed effects models?” Political Analysis (in press). 

http://pages.stern.nyu.edu/~wgreene. 

Greene, W., Orea, L. and A. Wall (2011). “A one-stage random effect counterpart of the 

fixed-effect vector decomposition model with an application to UK electricity distribution 

utilities.” Efficiency Series Paper 01/2011, Department of Economics, University of Oviedo, 

Spain. http://www.unioviedo.es/economia/EDP/ESP0111.pdf. 

Gumbau-Albert, M. and J. Maudos (2006). “Technological activity and productivity in the 

Spanish regions.” Annals of Regional Science 40, 55-80. 

Hausman, J.A. and W.E. Taylor (1981). “Panel data and unobservable individual effects.” 

Econometrica 49, 1377-1398. 

Hsiao, C. (2003). Analysis of Panel Data, 2nd ed. Cambridge University Press.  

Jorgenson, D.W. and K. Stiroh (2000). “Raising the Speed Limit: U.S. Economic Growth in 

the Information Age.” Brookings Papers on Economic Activity 1, 125-211. 

Lin, W.T. (2009). “The business value of information technology as measured by technical 

efficiency: Evidence from country-level data.” Decision Support Systems 46, 865-874. 

Machin, S. and J. Van Reenan (1998). “Technology and changes in skill structure: Evidence 

from seven OECD countries.” Quarterly Journal of Economics 113, 1215-1244. 

Mas, M., Pérez, F. and E. Uriel (2009), El stock y los servicios de capital en España y su 

distribución territorial (1964-2007). Fundación BBVA. 

Mas, M. and J. Quesada (2005). Las Nuevas Tecnologías y el Crecimiento Económico en 

España. Fundación BBVA, Bilbao. 

Mundlak, Y. (1978). “On the pooling of time-series and cross-section data.” Econometrica 

64, 69-85. 

Oliner, S.D. and D.E. Sichel (2000). “The Resurgence of Growth in the Late 1990’s: Is 

Information Technology the Story?” Journal of Economic Perspectives 14, 3-22. 

Plümper, T. and V.E. Troeger (2007), "Efficient estimation of time-invariant and rarely 

changing variables in finite sample panel analyses with unit fixed effects," Political Analysis 

15, 124-139. 

Quesada, J. (2008). “Política regional de innovación.” Investigaciones Regionales 12, 181-

210. 



20 
 

Serrano, L. and A. Soler (2008). Metodología para la estimación de las series de capital 

humano. 1964-2007. Fundación Bancaja-IVIE.  

Stiroh, K. (2002). “Information Technology and U.S. Productivity Revival: What Do the 

Industry Data Say?” American Economic Review 92, 1559-1576. 

Timmer, M. and B. van Ark (2005). “Does Information and Communication Technology 

Drive EU-US Productivity Growth Differentials?” Oxford Economic Papers 57, 693-716. 

Worrall, J.L. (2008). “Racial composition, unemployment, and crime: Dealing with 

inconsistencies in panel designs.” Social Science Research 37, 787-800. 

  



21 
 

Table 1. Summary statistics of variables 

 

Variable Mean      Min     Max Standard deviations 

    Overall Between Within 
Between-

to-Within 

        

ln Y 15.65 13.76 18.63 0.89    

ln INF 15.03 13.43 17.53 0.67 0.61 0.29 2.10 

ln K 16.20 14.32 19.16 0.83 0.80 0.26 3.05 

ln L 5.24 3.39 8.00 0.84 0.83 0.16 5.15 

ln HC -1.96 -3.14 -1.14 0.34 0.19 0.27 0.71 

ln IT 13.13 10.64 16.71 1.02 0.88 0.54 1.63 

        

IKH 2.57 1.99 3.24 0.27    

ITIC 0.04 0.01 0.09 0.01    
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Table 2. FE, FEVD, True FE frontier and FEVD frontier estimations 

 
Variable  FE FEVD   True FE 

  Frontier 

  Model 1 

    FEVD 

  Frontier 

  Model 1 

  True FE 

  Frontier 

  Model 2 

    FEVD 

  Frontier 

  Model 2 

        

  Dependent variable: ln Gross Value Added (Y) 

        

ln INF    0.0491***   0.0465***   0.0488***   0.0461***   0.0407***   0.0325*** 

   (0.0146)  (0.0113)  (0.0131)  (0.0102)  (0.0127)  (0.0093) 

ln K   -0.0274   0.2969***  -0.0217   0.3039***  -0.0175   0.2628*** 

   (0.0250)  (0.0232)  (0.0232)  (0.0226)  (0.0228)  (0.0217) 

ln L    0.3078***   0.6187***   0.2971***   0.6203***   0.3016***   0.6280*** 

   (0.0135)  (0.0126)  (0.0132)  (0.0124)  (0.0136)  (0.0113) 

ln HC    0.0176*   0.0663***   0.0192**   0.0669***   0.0004   0.0498*** 

   (0.0097)  (0.0132)  (0.0093)  (0.0119)  (0.0095)  (0.0110) 

ln IT    0.1165***   0.0690***   0.1148***   0.0612***   0.1087***   0.1096*** 

   (0.0165)  (0.0234)  (0.0144)  (0.0215)  (0.0162)  (0.0211) 

t    0.0174***   0.0061***   0.0159***   0.0062***   0.0148***   0.0022 

   (0.0015)  (0.0018)  (0.0014)  (0.0015)  (0.0014)  (0.0014) 

t2   -0.0007***  -0.0013***  -0.0005***  -0.0012***  -0.0004***  -0.0007*** 

   (0.0001)  (0.0002)  (0.0001)  (0.0001)  (0.0001)  (0.0001) 

      1.0196***    1.0086***    0.9707*** 

    (0.0442)   (0.0410)   (0.0368) 

Constant    15.511***   15.747***   15.484***   15.746***   15.483***   15.772*** 

   (0.0141)  (0.0143)  (0.0194)  (0.0303)  (0.0189)  (0.0125) 

        

Region 

Dummies 
      No     Yes      No     Yes      No     Yes 

        

No Technical 

Inefficiency 

(H0: -1/	= 0) 

              Rejected Not rejected  Rejected  Rejected 

        

ITIC        0.1350   1.7539*** 

       (0.0838)  (0.1819) 

IKH       -3.5295***  -0.9543 

       (0.6450)  (1.0414) 

Constant        2.5852*  -6.9666** 

       (1.5271)  (2.8014) 

  Number of observations: 1050 

        

Note: *** significant at 1% level; ** significant at 5% level; * significant at 10% level. 
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Table 3. Second stage estimations of FE model and True FEVD frontiers 

 

         FE        Homoskedastic 

   True FEVD Frontier 

(Model 1) 

Heteroskedastic 

True FEVD Frontier 

(Model 2) 

       
Variable Coeff. t-stat. Coeff. t-stat. Coeff. t-stat 

       
ln INF -0.091 -2.095 -0.090 -2.061 -0.082 -1.913 
ln K 0.275 5.517 0.255 4.973 0.231 4.204 
ln L 0.386 8.137 0.408 8.361 0.427 8.208 
Region 2 -0.038 -1.585 -0.037 -1.578 -0.034 -1.372 
Region 3 -0.130 -4.423 -0.127 -4.336 -0.125 -4.188 
Region 4 0.218 8.552 0.221 8.465 0.213 7.654 
Region 5 -0.115 -2.539 -0.109 -2.414 -0.096 -2.091 
Region 6 -0.083 -3.453 -0.082 -3.437 -0.078 -3.174 
Region 7 -0.070 -2.243 -0.070 -2.282 -0.072 -2.293 
Region 8 -0.114 -5.382 -0.112 -5.239 -0.108 -4.675 
Region 9 -0.017 -0.503 -0.009 -0.264 0.007 0.217 
Region 10 0.029 1.321 0.028 1.298 0.025 1.057 
Region 11 -0.377 -7.932 -0.362 -7.501 -0.341 -6.700 
Region 12 -0.282 -7.304 -0.283 -7.129 -0.282 -6.788 
Region 13 0.083 1.918 0.091 2.107 0.107 2.441 
Region 14 -0.032 -1.738 -0.034 -1.814 -0.039 -1.907 
Region 15 0.111 5.843 0.111 5.882 0.117 5.942 
Region 16 0.053 1.664 0.057 1.819 0.065 2.026 
Region 17 0.083 4.448 0.079 4.245 0.081 4.083 
Constant 15.571 858.48 15.606 867.03 15.607 823.53 
       

R2 0.993  0.993  0.992  

No. observations: 50      
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Figure 1. Estimated unit effects: within and FEVD (second stage)*  

 

 
 

* Partial-adj. refers to FEVD second stage excluding regional dummies. Full-adj. refers to FEVD 

second stage including regional dummies.  

 

 
Figure 2. Efficiency based on unit effects: within and FEVD (second stage)* 

 

 
 

* Partial-adj. refers to FEVD second stage excluding regional dummies. Full-adj. refers to FEVD 

second stage including regional dummies.  
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Figure 3. Average provincial efficiency indices from heteroskedastic frontier models 
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