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Abstract

Land fragmentation affects dairy farming throughirtfluence on foodstuff production.
As such, its impact is expected to be larger oeresive farms (which use a large land
area per cow) than on intensive ones. Given tlaad Ifragmentation could also
constitute an obstacle to adopt extensive produdgohnology. As direct payments of
the Common Agricultural Policy to protect the eowiment and preserve rural heritage
concern extensive farming, land fragmentation emtuce the effectiveness of this rural
development aid. We propose using a stochasticiémolatent class model approach to
evaluate this double effect of land fragmentatioamely its different impact on
extensive and intensive farms’ productivity andifmuence on the technology choice.
The model is estimated using a sample of Spanisi f@ams located in a region where
land is highly fragmented. Based on the resultaiabtl, a simulation analysis is carried
out to evaluate the impact of land consolidatiancpsses on both the technology choice
and farms’ productivity.
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1. Introduction

Land fragmentation, in which a single farm usesesavparcels of land, is a
common feature in many countries (Blarel et al92,9Van and Cheng, 2001; van Dijk,
2003). This characteristic is usually expected &veha negative effect on farms’
productivity due to several reasons: 1) fragmeomatauses an increase in traveling
time between fields which induces both lower lapoyductivity and higher transport
costs for inputs and outputs; 2) it reduces theieficy of machines in relation to that
obtainable in large, rectangular fields (Buller @wining, 1979); 3) land is lost when
forming plot boundaries and access routes; andhel)need for additional machinery,
secondary buildings or external service expensdgerefore, land consolidation
processes have been developed around the worldbtd the negative impact of land
fragmentation on agricultural productivity (Vitikeen, 2004; Pasakarnis and Maliene,
2010; Niroula and Thapa, 2005).

On the other hand, land fragmentation (LF hereaftenlso expected to have
some positive aspects for farmers. For instancendes could take advantage of
differences in both elevation and soil type as sraplower elevations mature before
than those at higher elevations, and plots witferbht soil types permit a farmer to
produce a more diversified portfolio of crops. Brnces in elevation and soil type
would thus allow the synchronization of harvestshvavailable family labor, thereby



reducing requirements for hired labor. AdditionallyF is expected to reduce
production risk associated with the influence afdtarms, floods or fire.

The empirical literature measuring the effect of drFagricultural production is
quite limited, though it is evolvingWhile most papers examine this issue by including
an LF measure as an additional input in the farpreduction function \(Van and
Cheng, 200;lWu et al., 2005 Wadud and White (200pRahman and Rahman (2008)
and other studies use the Stochastic Frontier AmhrdSFA) to analyze its effect on
farms’ productivity (i.e. efficiencyj. Most empirical studies conclude that
fragmentation negatively affects agricultural prohity (Wan and Cheng, 2001
Rahman and Rahman, 2Qdaut, in some cases, LF shows a non-significafgiceion
agricultural production\{/u et al., 200k Therefore, it seems that the effect of LF could
depend on the characteristics of the productiongs® analyzed.

Focusing on milk productiori;orral et al. (2011found a negative impact of LF
on farms’ productivity and profitability, which sggsts that LF generates some
difficulties for foodstuff production inside therfa. In this study we try to extend the
empirical study carried out byorral et al. (2011and test two additional, but related,
hypotheses. First, we analyze whether the effedtFofis larger inextensivefarms,
which use a large proportion of own-produced féeHan in farms using a large
proportion of purchased foodstuff, usually known iagensive farms Qlvarez and
Corral, 2010 Alvarez et al., 2008 Second, as LF is expected to be more relevant fo
extensive farms, and the choice of production @eeg is not external to dairy farmers
(i.e. it is an endogenous decision), we also examwhether LF has conditioned the
current choice of production process. In particutairr approach allows us to examine
whether farms tend to select more (less) extensiethods as the degree of LF
iIncreases.

Both farmers and policy makers are likely to firn tempirical results of this
paper interesting. Regarding farmers, the degremarket competition is expected to
increase due to the disappearance of milk quota®1®, and the probable reduction in
milk prices could compromise the economic viabilby dairy farms. Therefore
improving farms’ technical efficiency could be nssary to permit the farms to survive.
Additionally, intensive dairy production is profitee when a large production per cow
compensates the large expenses on (purchased)nt@tes. This often occurs when
the ratio between the price of milk and the priteancentrates is high. However, given
that feeding costs (most of which are concentratelmases) represent 80% of variable
costs, farms will likely be forced to adopt mordemsive systems of milk production in
order to use more self-produced foodstuff if thdkngrice falls. The struggle for
survival will thus likely rely on improving farmdechnical efficiency and adopting
extensive production processes, and both may depefite degree of LF.

' Exceptions ar®i Falco et al. (201Q)Del Corral et al. (201])andLatruffe and Piet (2013h Europe;
Nguyen et al. (1996Wang and Cheng (20Q1¢arter and Estrin (2001)an et al. (2010for China; and
Parikh and Shah (1994Jabarin and Epplin (1994Wadud and white (2000Rahman and Rahman
(2008) Kawasaki (201Q)Manjunatha et al. (20139r other (Asian) countries

? Technical efficiency is measured in this literatagethe ratio between the actual production andrige
attained by fully exploiting the technological patial.

* Extensive farms are usually characterized by highuas of land per cow ratio and low values of
concentrates per cow ratio.



On the other hand, as extensive production prosegseerate lower ground and
water pollution Haas et al., 20GBasset-Mens et al., 20))3he Common Agricultural
Policy includes actions to incentivize its adoptmndairy farmersouncil Regulation
No 74/2009. In this sense, our results on the choice ofnsitee or extensive
production processes contribute to our understgndih whether LF is indeed an
obstacle to adopting less polluting production peses.

To carry out our analysis we propose using a late&ags stochastic production
frontier model. The model is estimated using a darapSpanish dairy farms located in
Asturias, a region located in the northwest of Bpahere land is highly fragmentéd.
Our empirical strategy allows both the identificatiof the technological differences
between intensive and extensive dairy farms as agethe measurement of the impact
of LF on the choice of a milk production systemabfdition, the frontier nature of the
milk production function allows an assessment & ittmpact of LF on the technical
efficiency of intensive and intensive farms. Figaieveral simulation exercises are also
performed to analyze the effects of a potentialecgidn in the number of plots due to a
hypothetical land concentration process.

2. Empirical model

In contrast to the common practice of estimatirsgngle production function for
all farmers regardless of whether they are actualyg extensive or intensive systems
of milk production, we will assume that the teclogiés of these two groups of farms
may be different. However, the use of one technolog another is not directly
observed by the researcher. At most, only partiehnological indicators, such as the
ratios of concentrates per cow or land area per aosvavailable.

Most papers have used a two-stage procedure to wihal the issue of
production heterogeneity. In the first step, thegle is split into a number of mutually
exclusive groups (classes) based on sampeori information about farms, and in the
second stage different functions are estimate@dch class/sub-sample separately (e.g.
Hoch, 1962 Newman and Matthews, 2008umbhakar et al., 2009 As this
(clustering) approach allows the estimation ofed#ht technological characteristics for
farms belonging to different groups, this is thestnmommon approach followed in the
literature to address the issue of farm produdtieterogeneity. However, if treepriori
classification is not precise it will generate soemsors in the first (allocation) stage of
the procedure, which might also bias the technoldgparameter estimates of the
second stage. In additiorea and Kumbhakar (2004ointed out that two-stage
procedures are not efficient because they do netthes information contained in one
class to estimate the technology of other clasBes. inter-class information may be
quite important in our empirical application beaatsms belonging to different classes
share some common features, although their techresionay be different.

To account for farm production heterogeneity, weoadte using a latent class
model (hereafter LCM) that combines the stochastatier approach with a latent
class structure. An LCM, also known as a finite toni@ model, assumes that there is a

* The Agrarian Census conducted in 1999 (AgrariansGses are performed every ten years and the last
one including the number of plots per farm is tinan 1999) shows that the average number of plets p
farm in Asturias is 12.51(E, 20149.



finite number of structures (classes) underlying thata. These models classify the
sample into several groups and each farm can lgmnasisto a particular group using the
estimated probabilities of class membershijike other clustering methods, the LCM
can be viewed as a clustering procedure that seysathe sample and estimates the
technology for each group, but in only one stagends, in the absence of a precise
prior classification of farms, the LCM clusters tlaems by searching for differences in
the production technology, which is exactly what ave looking for Additionally, as
both clustering and parameter estimation are chmigt simultaneously, it does not
ignore the above-mentioned inter-class information.

In this paper, we use an LCM to estimate the teldgyoof dairy farms
according to their degree of intensification. Simge are interested in the efficiency of
each group, the latent class model is applied gtoahastic frontier framework. The
general specification of a stochastic frontier L@kdduction function can be written as
follows:

Iny; = f(x, Bj) + vy — wy
(1)

wherei stands for farms and= 1,...,J for class. The subscript is dropped from all
variables for notational eas®; is a measure of firms’ outpuk; is a vector of
explanatory variablegy; ; is a noise term that follows a normal distribotiwith zero
mean and class-specific constant variance,gjdis a class-specific one-sided error
term capturing farms’ inefficiency/In an LCM setting, the number of classkeshould
be chosen in advance by the researcher. In ouicapiph we assume that there are two
classes corresponding to extensive and intensisesg of milk production, i.e. J=2.
As the set of parameteft is j-specific, the technological characteristics vacyoas
classes. It is worth noting that only between-grang not individual heterogeneity is
controlled using a LCM because all farms belondgiaga particular group share the
same technology.

Letting § denote all parameters associated with clpsshe conditional
likelihood function of a firmi belonging to clasg is LF;(4). The unconditional
likelihood for firm i is then obtained as the weighted sum of thelass likelihood
functions, where the weights are the probabiliteslass membershi;. That is:

J J
LF;(0,6) = Z LRy (6,)P;(8:),  0<Py(5) <1, Z Pij(6) =1
j=1 j=1

> Finite mixture models have been broadly used iresg\fields of research (sée=ard et al., 1997or
Gropper et al., 1999or simple applications; arfélattese et al., 2004r O'Donnell et al., 200&or more
comprehensive applications that aim to examinertelclyical gaps using a metafrontier approach).

® Later on we assume that the variance of the iieffcy term varies across farms, and hence our
stochastic frontier model can be viewed as a hstedastic model using the terminology coined by
Kumbhakar and Lovell (2000)

" Several non-clustering methods have been alsoopeabto deal with unobserved heterogeneity across
firms. Of particular interest are the panel datinesors recently introduced byreene (2005)where
unobserved heterogeneity is captured through afsétm-specific intercepts that are to be estimate
simultaneously with other parameters. However, dipigroach imposes common slopes for all farms, so
all of them would share the same technological attaristics such as output elasticities and ecoa®mi
of scale.



(2)

where, 8=(6y,...,6;), 6=(64,...,6;) and the class probabilities are parameterized as
multinomial logit model:

exp(6;q;
P;(8;) = 7 b ’q‘,) , j=1...] § =0
Y-, exp(6;q;)

®3)

whereq; is a vector of farm-specific variables. Therefdhe overall likelihood function
resulting from (2) and (3) is a continuous functafrthe vectors of parametef?sando,
and can be written as:

N N J
i=1 1 Jj=1

i=

(4)

Maximizing the above likelihood function gives agatically efficient
estimates of all parameters. It should be pointedtizat in this framework each farm
belongs to one and only one class. Therefore, tihieapilities of class membership just
reflect the uncertainty that researchers or regtdahave about the true partition of the
sample. The estimated parameters can be used fout@mposterior class membership
probabilities using the following expression:

LF;;(6;)Pi; (5))
P |) — J\"] A] ] _
ol -1 LFy (8))Py (8)

()

These posterior probabilities of membership carthe® used to allocate each
farm to a particular class, e.g. each farm couldllmeated to the class with the higher
posterior probability. It is worth noting that pesor probabilities can vary over time
and therefore farms are allowed to switch betwlerektensive and intensive regimes.

3. Data

The empirical application is based on data procggtliom dairy farms located
in the region of Asturias in northwest Spain. Thgiaultural sector in Asturias is
specialized in milk production, which accounted 5@% of agricultural production in
2011 GADEI, 201). Asturias and the North of Spain in general draracterized by a
high degree of LF. As policy makers are worriedwlibe effect of LF on agricultural
production, some land consolidation mechanisms haes implemented in the region
over several decades. In particular, land consididgorocesses affected 7,545 farms
during the 2001-2010 period. Specifically, 17,3%<cthres divided into 59,284 plots
were concentrated into 15,720 plots over this pefic\DEI, 201).

The data used in the empirical analysis consisarofinbalanced panel of 144
Spanish dairy farms that were enrolled in a volyntacord-keeping program that was



conducted by the regional government over a 13-geaod from 1999 to 2011. This

record-keeping program collects information abouenDairy Farmers Management
Associations located in Asturias. These associatiare funded by the regional
government and their main objective is to providenagerial advisory services to its
associated farmers. To collect the data necessaityé advisory service, each farm is
visited monthly by a technician. The monthly infaton is combined with annual

inventories to carry out an annual report on eachnf

Furthermore, in 2008 a survey was conducted amoadarmers affiliated with
the Dairy Farmers Management Associations to deterthe number of plots that each
farm had in 2007. Our analysis was carried outragsy that the number of plots does
not change if the number of hectares remains constat is, if for some farm the
number of hectares in 2004 (2009) is different fritniat in 2007, then its observations
corresponding to 2004 and previous years (2009@lmiving years) are excluded from
the data. This explains why the number of obsesaatireaches its maximum around
2007. This selection process leads to an unbalampzeeel that contains 1,524
observations.

The dependent variable is the production of mykand is measured in liters.
Five inputs are considered: Labog)(includes family labor and hired labor and is
measured using Social Security expenses; Cayyss( defined as the number of adult
cows in the herd; Feed purchasgg {ncludes expenses on concentrates and forage
purchases; Forage production expenggsafe defined as the costs of seeds, fertilizers,
machinery, fuel and land; and Animal expense}s dre defined as livestock supplies,
breeding and veterinary expenses. To take into wtcgossible technological
differences we include the dummy variable Coastcivig equal to 1 for farms located
in a coastal county. Time dummy variables wereothiced to control for common
factors that affect all farms and that vary ovendj such as weather conditions and
technical change (1999 is the base year). All theva monetary variables are
expressed in 2011 Euro.

We have included five variables as efficiency deieants: Plotsz) is the (log)
number of plots and is used as an LF measure; fdaftibr () is defined as the ratio
of family labor to total labor; Own landz] is the ratio of owned land to total land,;
Housing ¢) is defined as a dummy variable equal to 1 fom&rthat use freestall
housing (Cabrera et al., 2010); and Milkizg) {s a dummy variable that takes the value
1 if the farm uses a milking parlor (Cabrera et 2010). Regarding the sample
separating variables, we have included the ratinc€otrates/cowsg{) to anchor our
two classes to differences in milk production syselLand () is the logarithm of
farm land measured in hectares and the logariththeohumber of plotsg).2”

Table 1provides a descriptive summary of the variablesius this study. The
dairy farms in the sample are highly specializethvmnore than 80% of farm income
coming from dairy sales. The average farm sizéénsample is larger than the average

® LF can be measured in several ways; including thepSon index $impson, 1949used byBlarel et al.,
1992andWu et al., 2005among others), the Januszewski indéxn(iszewski, 196&ised byAustin et
al., 2013; the average plot sizélguyen et al., 1996/Nadud and White, 20QGnd the number of plots
(Wan and Cheng, 2001; Falco et al., 20Ihe use of the Simpson or the Januszewski irddexaot
possible given that the data does not contain indtion about the plots’ surface (only the farm land
surface and number of plots is available). Thushig study LF was measured using the number a$plo

° Note that gis the same variable as z



Spanish farm (31 cows in 201Bpurostat, 201Ytbut quite similar to the average farm
size in some of the main milk producing countrieg€urope such as France or Germany
(46 cows; Eurostat, 2014). Differences among faanesquite important as the standard
deviation of milk production is 69% of mean prodact Finally, it is worth noting that
land is highly fragmented since the average nurobgtots per farm is approximately
thirteen.

INSERT TABLE 1
4. Reaults

We assume that the frontier production function(lipis a Translog function
where, as is customary, the explanatory variabée® been divided by their geometric
mean. In particular, the model to be estimated is:

2011

5 5 5
1
Iny =, + z Brj In x; +§Z Z Bin)j In x; Inxp, + B¢ jCoast + Z Bt|j Dt
k=1 k=1h=1 t=2000
TV W,

(6)

where thef’'s are parameters to be estimated, and the first-ardefficients can be
interpreted as output elasticities for a farm cbézed by an input endowment equal
to the sample geometric mean. The stochastic pahiteomodel is decomposed into a
noise term,v, and an inefficiency termy. While v is assumed to be normally
distributed, the inefficiency term is assumed ttofe a half-normal distribution.

Unlike most papers which have estimated LCM stanhdsontier models, we
assume that the variance of the inefficiency tesnmeteroscedastic and varies across
farms. In particular, we model the standard desmatfu as a function of the technical
efficiency determinants mentioned in Section 3 thia

In O'ulj = a0|j + a1|jzl + a2|jZZ + (l3|jZ3 + a4|jz4 + (l5|j25

(7)

Regarding the prior class probabilities, the prdiigbof belonging to the
extensive group (hereaft(d)) is parameterized as follows:

exp( 8y + 61q1 + 629, + 63q3)

P(6) =
1+ exp(8p + 6191 + 6292 + 65q3)

(8)

The estimation was carried out using the econom@@ickage GAUSS. The
parameter estimates B{d) are shown inmable 2 The coefficients of the three variables
are significant and show the expected sign. Thargel values of the concentrates/cow
ratio (1) characterize intensive farms and, therefore, mighi the probability of
belonging to the extensive group. The probabilityp@ing an extensive farm increases
with farm land ), an expected result because extensive farmslaaddor foodstuff
production. The more important result for this stusl that the number of plots}d)
diminishes the probability of using an extensivehteology, as would be expected. This



outcome seems to indicate that LF has been an targarbstacle to adopting extensive
production processes in our sample.

INSERT TABLE 2

Based on the estimated prior class probabilitiesstgrior probabilities of
belonging to either the extensive or intensive geowere computed using equation (5).
While 823 observations were classified as extensi0& observations were considered
as intensive. It is worth noting that the classificn of each observation was quite clear
in general as the average posterior probabilitpeihg extensive (intensive) of those
observations classified in the extensive (inter)siweup was very high, 87.2% (84.5%).

Table 3provides the average value of the variables induidethe empirical
analysis for each group. In addition to the facit timtensive farms are slightly larger
than extensive farms, other differences comply withexpected characteristics of both
types of farms. For example, while intensive faras® more concentrates per cow,
extensive farms use a larger land area. The gtadifeesyence by far has to do with the
number of plots. The number of plots of intensieenfs is almost double that of
extensive farms, despite having a smaller averageé areaThe latter result seems to
indicate again that the adoption of extensive syst@f milk production has been
conditioned by the degree of LF.

INSERT TABLE 3

Tables 4and 5 provide the estimated production frontier paramsetéor
extensive and intensive farms respectively. In ganeotable differences in estimated
parameters are found between the types of farms. ikgiance, the first-order
coefficient of Labor%,) is not statistically significant for extensiverias.*® The lack of
significance of labor is not unusual in studieslariag family farms with very little
hired labor (see, for exampléhmad and Bravo-Ureta, 1996uesta, 2000Roibas and
Alvarez, 201). This is the case in our application where hiedabr represents only 5%
of total labor on extensive farms. Interesting egiguhe proportion of hired labor in
intensive farms is almost double and the labortieifs is highly significant in this
technology. The elasticity with respect to cowg for intensive farms is quite larger
than that for extensive farms, an expected resuéingthat the production per cow is
higher for intensive farms. While the elasticity f@fed purchasesxd) is larger for
extensive farms, most likely due to the diminishimeturns to the use of concentrates,
the elasticities of forage production expensgg @nd animal expensess) are
relatively low, though slightly larger in both cader the extensive technology. We also
find significant differences in productivity in fav of coastal farms for the intensive
technology, whereas no difference was found foremsive farms. Time dummy
variables show rather similar values for both tetbgies. The parameter estimates
indicate that the productivity in 2011 was 18% &rthan in 1999. This result suggests
that some technological change took place overstmaple period due to genetic

' Differences in the first-order parameters mustrtterpreted with caution because these parameters ar
related to the input elasticities of the samplerage farm using both technologies, and the sample
average farm does not correspond with either tieza@e intensive farm or the average extensive farm.
When the output elasticities in each group areutaled using the average observation belongingéeo t
corresponding group, the computed elasticitiesstightly closer than those obtained through thst fir
order parameters.



progress; feeding technologies or cow comfort improvemeriswever, the time
dummy parameters do not follow a monotonic pathe Treximum productivity was
achieved in 2006 for both technologies which sutgytsat other period characteristics
like weather conditions also play a role in detering farm productivity.

INSERT TABLE 4
INSERT TABLE 5

We have also calculated the elasticity of scalébfith types of farms and tested
whether they are significantly different from 1 nggithe Wald test. While the elasticity
of scale takes a value of 1.002 for the extenseéariology, it is equal to 1.144 for the
intensive one. Whereas the Wald test does nottréjeaconstant returns hypothesis for
the extensive farms, it rejects this hypothesisritensive farms? Therefore, the larger
size of intensive farms is likely (or partially) used by the existence of increasing
returns to scale.

Tables 6and 7 provide the parameter estimates of the deternsnahfarms’
inefficiency. We have also used the estimated aoeffts of equation (7) to calculate
the expected technical efficiency of each obsewwdfi As in Alvarez and Corral
(2010), on average the technical efficiency ofnstee farms was found to be slightly
larger (92.2%) than that corresponding to extenfavms (90.2%). Moreover, notable
differences between the technologies with regardfficiency determinants were also
found. For instance, while the effects of the prtipa of own land %), freestall
housing &) and use of a milking parlorzg) on intensive farms’ efficiency are
statistically significant, they are not significadieterminants of extensive farms’
efficiency. In particular, the proportion of ownnth is found to reduce technical
efficiency. This effect may be due to the posdipitif choosing optimal rental land in a
context where many farms abandon production, Igpittland unusetf: As in Corral
et al. (2011)freestall housing is found to improve technicdicegncy and the use of a
milking parlor diminishes technical efficiency. Gme other hand, the number of plots
(z2) reduces the technical efficiency of extensivengras was expected, while it is not
significant for the intensive farms (though it isnast significant at the 10% level). A
Wald test allows us to reject the hypothesis tludlh effects are of the same magnitude
in both technologie$’ As expected, the impact of LF on farm productivityarger for
those (extensive) farms where milk production issttyodependent on self-produced
foodstulff.

INSERT TABLE 6
INSERT TABLE 7

We have also performed several simulation exerd¢sesalyze the effects of a
potential reduction in the number of plots due tdy@othetical land concentration
process. In particular we examine the evolutiommitk production, farms’ variable

! see Roibas and Alvarez (2010), Roibas and Alvarez (2012

12 1n this case, the value of the Wald test is 8@8ich is significant for any usual level of sifjcance.
“ The expected technical efficiency is calculateshgshe formulaE [u] = o,,/2/7

' The number of farms in Asturias descend from 42821909 (INE, 2014a) to 22688 in 2009 (INE,
2014b)

" It takes a value of 4.31, which is significant & fevel.



profits and the probabilities (both prior and postg of adopting the extensive
technology when the number of plots is progresgivetluced from its current value to
10% of this value. This range of values includes duction in the number of plots
achieved in the land concentration processes daoig in Asturias, which roughly
corresponds to a 27% reduction of its initial value

The simulation exercises rely on the estimated fiooerits of the efficiency
determinants to calculate the technical efficieatgach observation associated with a
particular number of plots, maintaining the resthd efficiency determinants constant.
For each observation, the simulated productionllevebtained by multiplying the
technically efficient production level (which isroputed using the parameter estimates
of both extensive and intensive frontiers) and ¢beresponding technical efficiency
score.Figure 1shows the average increase in production for sktenand intensive
farms depending on the percentage reduction irs fidf Figure 2resumes the impact
of the reduction in the number of plots on the afalie profits of extensive and intensive
dairy farms. The simulated variable profits werenpoited by multiplying the simulated
production by milk price and then subtracting feedrchases, forage production
expenses and animal expenses.

INSERT FIGURE 1
INSERT FIGURE 2

Figure 1shows that reducing the number of plots to 27%t®fcurrent value
generates a 6% production increase for extensivesfand a 2% increase for intensive
farms. Therefore, our calculations show that a lemsolidation process would have a
much larger impact on extensive farms’ productivity addition, our simulation in
Figure 2shows that reducing the number of plots to 27%t®ofcurrent value would
increase extensive farms’ profits by 16%, whilestprofit increase would be much
lower (6%) for intensive farms. This result is rbbgin line with Corralel al. (2011),
who, considering a common technology for the wrede of farms, found an 11.7%
increase in variable profits with a similar redoatin the number of plots.

Prior probabilities of belonging to the extensiveup were simulated using the
parameters presented Tmble 2 Again, we calculate the prior probabilities usthg
current number of plots and the reductions desdrdd®ove, given the values for each
observation of land and concentrates per cow. Rosterobabilities were calculated
using the simulated prior probabilities and assgntirat the reductions in the number
of plots do not affect the relative goodness-o®fitboth (i.e. intensive and extensive)
sets of parametef§ Figures 3and4 provide the average probability of belonging te th
extensive group for extensive and intensive famspectively.

' The simulation uses the parameters in Tables &atds worth noting that the effect of the numbé
plots on intensive farms’ efficiency is not sigon#nt and the results related to these farms mastftire

be interpreted with caution.

Y Percentage increases in production do not exacttyespond to increases in technical efficiency
because while the former are calculated by dividiregincrease in production due to the reductiotinén
number of plots by the expected production with ¢herent number of plots, the latter are calculated
using as denominator the efficient and not the etgakeproduction.

'8 In particular, we assume that the reductions inniin@ber of plots do not alter the ratio of likelitb
functions:

10



INSERT FIGURE 3
INSERT FIGURE 4

Both figures show that the probability of belongitm the extensive group
increases when the number of plots declines. Iticodar, Figure 4shows that a 50%
reduction in the number of plots leads the avem@ga and posterior probabilities of
intensive farms to be 69% and 59% respectively.cddea 50% reduction in the number
of plots could provide sufficient incentives for stmf the intensive farmers to adopt
extensive production processes. Moreover, a resluati the number of plots similar to
that achieved by the concentration processes daoué in Asturias would yield prior
and posterior probabilities values of 90% and 84%pectively. Consequently, such a
reduction in the number of plots would induce miosénsive farmers to choose the
extensive technology.

4. Conclusions

LF has frequently been found to be a handicap ncalgural production, suggesting
that land consolidation processes could help inravipg farms’ productivity and
profitability. As the effect of LF on dairy farm guuctivity is related to foodstuff
production inside the farm, two different hypotresee analyzed in this study. First, as
LF may make it difficult to produce foodstuff, west whether its impact is larger on
extensive farms, which are more dependent on setfyzed feed, than on intensive
farms. Second, as LF may mainly affect extensiwelpction, we test whether it will be
an obstacle to adopting such a technology. Botlothgses have been analyzed using a
latent class stochastic frontier approach wherentimber of plots is included as a
determinant of technical efficiency and as a vdeaonditioning the technology choice
by farmers.

Our results show that, in effect, the impact of isFlarger on dairy farms using

extensive production processes. Therefore, angyodducing the number of plots will

mainly affect the productivity - and thus the praffillity - of extensive dairy farms. In a

context where the price of milk is expected to fdlle to the disappearance of
production quotas, a land consolidation process beagrucial for the survival of dairy

farms even in regions where the climatic conditiaresideal for milk production.

Our analysis also indicates that LF conditions téehnology choice of farmers and
proves to be an important obstacle to the adopifoextensive production processes.
This is an important result given that the extemgxoduction technology generates less
ground and water pollution than the intensive tebtbay. For this reason the Common
Agricultural Policy provides incentives to dairyrrii@ers to adopt extensive production
processes. However, our results demonstrate teattiange from an intensive to an
extensive technology is unlikely when the farm laisdhighly fragmented. Land
consolidation processes could be considered ascassay complement to other
environmental policies in order to encourage intenglairy farmers to adopt a less
polluting technology.

LFU(B\])
U
Tio1 LFi(85)
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Future research should explore the technology éhdmgm intensive to extensive
production processes. Indeed, our simple latessataodel ignores the temporal nature
of the data, with the consequence that a given faay move freely from one class to
another over time. Although switching from interesio extensive production processes
is technically possible in our case (and vice Vera& would expect some degree of
persistence in class membership, as adoption offeresht technology is likely to
involve important adjustment costs. To appropnatidal with this issue, an alternative
latent class model which explicitly considers thensition from one class to another
should be developed. Such an analysis would requdatabase including information
about the farms’ number of plots during the whample period.
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Table 1: Summary Statistics of the Dairy Farms

Variable Average Std. Dev. Max. Min.
Milk 330900 227033 1322276 9079
L abor 4577 2623 53310 160
Cows 42 23 151 3
Feed purchases 158433 120749 1172081 10809
Forage production expenses 29915 24413 195297 675
Animal Expenses 15324 11964 160366 769
Coast 0.70 0.46 1 0
Plots 13.29 7.92 46 2
Family labor 0.93 0.19 1 0
Own land 0.56 0.28 1 0
Housing 0.53 0.50 1 0
Milking 0.49 0.50 1 0
Concentrates/cow 3546 1214 14801 885
Land 19 10 82 2
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Table 2: Prior probability of using extensive technology
Variable Estimates t-Statistic

Constant 0.343 1.547
o -4.612" -6.366
o 1.386 3.539
O -4.1417 -6.416

“Indicates significance at 10%;significance at 5%: significance at 1%
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Table 3: Average values of variables for extensive and intensive farms

Variable Extensve Farms Intensive Farms
Milk 305611 360591
L abor 4595 4556
Cows 41 43
Feed purchases 135186 185727
Forage production expenses 28645 31406
Animal Expenses 14410 16397
Coast 0.78 0.61
Plots 9.49 17.75
Family labor 0.95 0.91
Own land 0.54 0.58
Housing 0.47 0.61
Milking 0.44 0.54
Concentrates/cow 3050 4128
Land 20 18
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Table 4: Production function frontier parameters for extem$arms

Variable Estimates t-Statistic | Variable Estimates t-Statistic
Constant 12.423°  539.114 | (In x,)* 0.032 0.969
In X, 0.005 0.307 | In x4xIn xs 0.015 0.499
In X, 0.367" 10.610 | (In xs)? 0.035 0.866
In X3 0.448" 21.516 | Coast -0.013 -0.927
In X4 0.080™ 5.647 | Daooo 0.015 0.546
In Xs 0.102™ 5.812 | Dooos 0.034 1.289
(In x4)? 0.066 1.553 | Daoop 0.078" 2.808
In xyxIN X, 0.344™ 5.220 | Dagos 0.142™ 5.235
In xyxIn X3 -0.118™ -2.911 | Do 0.158™ 5.953
In xyxIn X4 -0.076 -2.507 | Dagos 0.246" 9.159
In x4In Xs -0.019 -0.476 | Daoos 0.260™ 10.213
(In x2)? -0.310" -2.844 | Dogor 0.227" 9.247
In xoxIN X3 -0.210% -2.622 | Daoos 0.150" 6.156
In XoxIN X4 0.156 2.465 | Daggo 0.174™ 6.869
In XoxIN Xs 0.100 1.934 | Dyoio 0.221" 8.152
(In x3)° 0.215" 3.503 | Doous 0.181" 6.806
In XsxIN X4 -0.075 2516 |Lna, -2.422™ -25.671
In XsxIN Xs -0.063 -1.677
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Table5: Production function frontier parameters for initeagarms

Variable Estimates t-Statistic | Variable Estimates t-Statistic
Constant 12.428°  659.608 | (In x4)° 0.082™ 2.774
In x4 0.081" 5.831 | In x4xIn Xs 0.081" 3.067
In X, 0.719" 23.256 | (In xs)? -0.104" -2.598
In X3 0.245™ 10.374 | Coast 0.049™ 5.178
In X4 0.042™ 3.201 | Daooo 0.040 2.161
In Xs 0.058™ 4.304 | Dygos 0.061" 3.265
(In x4)? 0.032 1.161 | Daoop 0.095" 4.664
In xyxIN X, 0.047 0.923 | Daoos 0.114™ 5.970
In xyxIn X3 -0.056 -1.355 | Daoop 0.136" 7.023
In xyxIn X4 0.008 0.309 | Daoos 0.207" 10.834
In x4In Xs -0.027 -0.979 | Daoos 0.254™ 14.153
(In x2)? 0.691" 4.575 | Dagor 0.209" 10.989
In XoxIN X3 -0.371" -3.559 | Dagos 0.140~ 7.354
In XoxIN X4 -0.273" -5.297 | Dagog 0.194™ 10.159
In XoxIN Xs 0.021 0.366 | Daoio 0.208™ 9.983
(In x3)° 0.088 0.896 | Dyon 0.189" 8.822
In XsxIN X4 0.089 2.465 |Lna, -2.885" -25.311
In XsxIN Xs 0.089 1.858
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Table 6: Efficiency deter minantsfor extensive farms
Variable Estimates t-Statistic

Constant  -1.870" -13.923
z 0.665" 3.192

2 0.661 1.607
z -0.242 -1.504
Z -0.143 -0.688
s -0.003 -0.013
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Table 7: Efficiency determinantsfor intensive farms

Variable Estimates t-Statistic
Constant  -2.572 -13.096
z 0.188 1.611
z 0.240 1.022
z 0.727" 3.002
Z -0.524 -1.781
Zs 0.903" 2.860
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