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Abstract 

Since the 1990s, electricity distribution networks in many countries have been 
subject to incentive regulation. The sector regulators aim to identify the best performing 
utilities as “reference or frontier firms” in order to determine their relative efficiency of 
other firms. This paper develops a nested latent class (NLC) model approach where 
unobserved differences in performance are modeled using two ‘zero inefficiency 
stochastic frontier’ (ZISF) models nested in a ‘latent class stochastic frontier’ (LCSF) 
model. This is in order to capture the unobserved differences due to technology or 
environmental conditions. This model allows researchers and regulators to identify 
reference networks that are persistently 100% efficient when the underlying technology 
is heterogeneous. We illustrate the proposed model with an application to the 
Norwegian distribution network utilities for the period 2004-2011. We find that the 
efficiency scores in both LCSF and ZISF models are biased, and some firms in the ZISF 
model are wrongly labelled as inefficient. Conversely, inefficient firms can be wrongly 
labelled as being fully efficient by the ZISF model. 
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1. Introduction 

Since the worldwide reform of the electricity sectors in the 1990s, many network 
utilities are incentive regulated. The reform trend coincided with some significant 
contributions to regulatory economics (Shleifer, 1985; Laffond and Tirole, 1993). The 
aim is to provide the natural monopoly firms with incentives to improve their operating 
and investment efficiency and to ensure that consumers benefit from the gains. The 
main methods used to achieve these objectives are incentive mechanisms, which 
provide the firms with financial rewards and penalties linked to their performance 
(Joskow, 2008).  

In many instances, the regulators aim to measure the firms’ relative efficiency 
against best practice and performance using parametric and non-parametric techniques 
(see Haney and Pollitt, 2013). However, the sector regulators normally identify more 
than one efficient benchmark firm as they have a large and diverse number of utilities in 
the sector. Statistical benchmarking methods have been used to determine the relative 
efficiency of individual firms’ operating costs and service quality compared to their 
peers.1 The efficiency estimates are based on measuring the gap between the actual cost 
of the firm (production) and an optimal point on the cost (production) frontier, which is 
estimated from the available dataset.  

 The methodology developed in the paper is motivated by theoretical as well as 
empirical regulatory issues. First, since the adoption of efficiency benchmarking for 
incentive regulation in the 1990s, the expectation has been that these methods will 
reduce he efficiency gap in the sector and that over time the regulation can transit to a 
yardstick regulation model based on average sector performance as benchmark. 
However, although average efficiency among the firms has improved, much of the 
efficiency gap among the firms has persisted. Part of the reason for this can be that 
technological heterogeneity among the firms has not been taken into account. 

Second, accounting for or failing to account for heterogeneity has, from the start, 
been a contentious point between the regulators and the firms. As regulators reward or 
punish firms according to their (in)efficiency level, the reliability of these scores is 
crucial for the fairness and effectiveness of the regulatory framework. Errors in 
identifying the correct benchmark firms or measuring their efficiency has also 
significant financial implications for the less efficient firms against which they are 
compared. Obtaining reliable measures of firms’ inefficiency requires controlling for 
the contextual factors under which each utility operates.2  

In many countries, the utilities have argued against the unfair effects of failing to 
account for the heterogeneity among the firms. In the UK, heterogeneity among 
distribution networks has been addressed through some post-measurement adjustments 
to utility costs. In Brazil, the regulator separates the distribution networks into two size 
groups (small and large) according to the units of energy distributed using 1 TWh as the 
dividing line. In Norway, the regulator uses some geographic and weather variables in 

                                                           
1
 Jamasb and Pollitt (2001) review the most commonly used approaches and provide a survey of 

benchmarking studies applied mainly in OECD countries. For a recent review of the applied literature on 
regulation of electricity distribution networks see, for instance, Kuosmanen (2012). 
2 The inclusion of environmental variables (also referred to as contextual variables or z-variables) in the 
model is contentious in the literature on efficiency analysis and has generated the development of several 
models (for a review of this topic in Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis 
(DEA) see, for instance, Johnson and Kuosmanen, 2012, and Llorca et al. 2014). 
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the benchmarking models and also separates the regional mid-voltage networks from 
low-voltage distribution utilities in benchmarking models. In Chile, The regulator has 
used six different reference norm firms to account for the heterogeneity among the real 
firms. In Sweden, the larger networks strongly argued that the norm models used by the 
regulator disadvantaged large networks. Given this context, methodologies designed to 
improve the accuracy of benchmarking methods and sensitive to technological and 
environmental heterogeneity can also help in deciding the true efficiency gap in the 
sector and the timing for moving to yardstick regulation stage.  

Recently, latent class stochastic frontier (hereafter LCSF) models that combine 
the stochastic frontier approach with a latent class structure have appeared in the 
efficiency analysis literature to account for technology heterogeneity among the firms. 

Latent class models, also called finite mixture models, have been used in several fields 
of research (see Beard et al., 1991; or Gropper et al., 1999; Orea and Kumbhakar, 2004; 
Greene, 2005, for some applications). A conventional LCSF model assumes there is a 
finite number of technologies (classes) underlying the data and allocates 
probabilistically each firm in the sample to a particular technology. Once the benchmark 
technology of each firm is identified, its inefficiency in relation to that benchmark 
technology is measured from a specific distribution (e.g. half-normal) in which the 
parameters might differ.  

Kumbhakar et al. (2013) have taken advantage of the latent class structure to 
introduce the so-called ‘zero inefficiency stochastic frontier’ (ZISF) model. This model 
overlooks the above-mentioned issue of unobserved differences in technology or 
contextual factors, but allows the researcher to distinguish between fully efficient firms 
and firms that tend to be inefficient to some extent. In this sense, we hereafter state that 
the ZISF is able to deal with unobserved behavioral heterogeneity, i.e. hidden 
differences in firms’ performance. The ZISF model is appealing in benchmarking, as it 
helps regulators to identify the utilities that can be used as “reference networks” for 
other (comparable) utilities.3 The present paper uses the ZISF approach to determine 
this reference network, while extending this to also take into account the technological 
heterogeneity as well as geographical and weather conditions among the firms.  

Kumbhakar et al. (2013) assume there are only two types of firms (efficient and 
inefficient). While the inefficiency distribution for fully efficient firms is a point mass at 
0, the degree of inefficiency for inefficient firms is captured by any of the array of 
standard one-sided distributions, such as half-normal, exponential, or truncated normal. 
However, they use the latent class structure to identify unobserved differences in 
performance, assuming the estimated technology to be the same for all firms. 
Consequently, they abstract from technological heterogeneity among the firms and 
focus exclusively on the distribution of inefficiency.  

The finite mixture models have traditionally been used to identify groups of 
firms that operate with different operating conditions or use different technologies. The 
issue is that the presence of one technology or another is not directly observed by the 
researcher. At most, only partial technological or environmental indicators are available. 
                                                           
3 Several South American countries (e.g., Argentina, Chile, and Peru) use a rather similar concept, called 
“Model Company”, to determine the allowed revenues, or allowed prices, of distribution companies (see 
Cossent, 2013). This approach relies on “building” engineering bottom-up models of a network company 
as benchmarking reference for a set of real firms, which is characterized in terms of network assets and 
associated costs, overhead structure and commercial costs, and the density degree (urban vs. rural) of the 
sectors or areas operated by each firm. 
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If the underlying data generation process only involves two technologies and there are 
only two types of firms (efficient and inefficient), we could then estimate a latent class 
model with four classes in which both technological and efficiency parameters differ. 
As both sources of unobserved heterogeneity (behavioral and technological) are treated 
symmetrically in such model, it is not certain that the differences in performance are 
caused by differences in behavior or technology, and vice versa. In addition, it is not 
possible to distinguish between the probabilities of sharing the same technology (i.e. 
being comparable firms) and probabilities of sharing similar performances (i.e. being 
fully efficient or inefficient).4 The difference in the nature of behavioral and 
technological differences is not a semantic point. We take advantage of the difference in 
the nature of both of these sources of unobserved heterogeneity to develop a nested 
latent class model (hereafter NLC model) where the behavioral differences are modeled 
using two ZISF models. These are in turn nested in a latent class structure to capture the 
unobserved differences in technology or environmental conditions.  

To our knowledge, the present study is the first to propose a ‘nested latent class’ 
model. Hence, we improve the method in Kumbhakar et al. (2013) and provide a 
framework to distinguish between the fully efficient and inefficient firms in a sample 
when the underlying technology is heterogeneous. The paper is organized as follows. 
The LCSF and ZISF models and the econometric specification of our model are 
introduced in Section 2. The data used in the empirical analysis is presented in Section3. 
The results obtained are presented and analyzed in Section 4. Finally, Section 5 offers a 
summary and conclusions. 

 

2. Empirical model 

This section develops a nested latent class model where unobserved differences 
in performance are modeled using two ZISF models nested in a LCSF model that, in 
turn, aims to capture the unobserved differences due to technology or environmental 
conditions. See Figure 1 for a graphical description of the proposed model.  

[Insert Figure 1 here] 

Let us first assume that there are J different technologies, and that each firm 
belongs to one and only one of these technologies. Next, we adapt in a panel data 
setting the ZISF model introduced by Kumbhakar et al. (2013) to identify behavioral 
differences among electricity distribution firms. The model assumes that some firms are 
fully efficient, while others tend to be inefficient to some extent.  

Conditional on technology j (=1,…,J), the general specification of the ZISF 
model can be written as follows: 

ln ��� = ��	��
 + ���|� + ���|�     (1) 

where i stands for firms, t for time, yit is a measure of firms’ cost or other performance, 
xit is a vector of cost drivers, ���|� is a noise term that follows a normal distribution, and 

                                                           
4
 Kumbhakar et al. (2013, p. 67) state that “it is not clear from the finite mixture approach whether 

identifying a group of efficient firms is actually predicated on overfitting from allowing technological 
heterogeneity across the regimes”.  
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���|� is a one-sided error term capturing firms’ inefficiency. While in the “inefficient” 
class we assume that ���|�~���0, ��

�
,5 the "fully efficient" class is defined by 
imposing that the variance of the pre-truncated normal distribution is zero, i.e. ��

� = 0.6 
In other words, while the relevant model for the inefficient firms is the traditional 
stochastic frontier model with two random terms (SF model), the relevant model for the 
fully efficient firms is the neoclassical cost model that does not include any inefficiency 
term (ZI model).  

As whether a particular firm is 100% efficient or not is not known to the 
researcher, the probability of being fully efficient or inefficient should be estimated 
simultaneously alongside other parameters of the model. Let us denote the probability 
of being inefficient as ∏i|j. As we are interested in identifying firms that have 
persistently been fully efficient during the sample period, we do not allow ∏i|j to vary 
over time.7 Following Greene (2005) we parameterize the probability of being 
inefficient as a multinomial logit function: 

Π�|����� =
������

 !"


#�������
 !"


      (2) 

where zi is a vector of firm-specific variables which influence whether a firm is 
inefficient or not. The contribution of firm i to the conditional (on technology-class j) 
likelihood is: 

%&�|�  �'�� = %&�|�
() · Π�|����� + %&�|�

,-.1 − Π�|�����1   (3) 

where θj encompasses all parameters associated with technology class j. %&�|�
() is the 

likelihood function of a SF model with two random terms, which is the applicable 
likelihood function when firms are inefficient, and %&�|�

,- is the likelihood function of a 
normal random variable, which is the proper function when firms are fully efficient. 
Following Greene (2005, eq. 35), we model these two likelihood functions as follows: 

%&�|�
() = ∏ %&��|�

()3
�4#       (4) 

%&�|�
,- = ∏ %&��|�

,-3
�4#       (5) 

We next use the latent class structure to identify differences in technology 
among electricity distribution firms. The unconditional likelihood for firm i is obtained 
as the weighted sum of their technology-specific likelihood functions, where now the 
weights are probabilities of technology-class membership, Pij. That is: 

%&��', 5
 = ∑ %&�|�  �'��7���5�� 8
�4#        (6) 

                                                           
5 For notational ease we here assume homoscedastic distributions for the inefficiency term. As this 
assumption could bias our parameter estimates, we use heteroscedastic specifications of σu in our 
empirical application.  
6
 We thank William Greene for reminding us that the "efficient" class cannot be defined by simply 

imposing ���|� = 0, since a continuous random variable with a positive variance does not take the value 
zero. 
7
 As regulators might be more interested in the results for specific regulatory periods, we will relax this 

assumption in our empirical application by dividing the sample period into two subperiods that refer to 
two different price control review periods.  
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where θ=(θ1,…,θJ), δ=(δ1,…,δJ), and the technology-class probabilities are again 
parameterized as a multinomial logit model: 

7���5�� =
����9�

 :"


#�∑ ����9�
 :"
;<=

�>=
 ,          ? = 1, … , A            (7) 

where qi is a vector of firm-specific variables. Therefore, the overall likelihood function 
resulting from (2) and (7) is a continuous function of the vectors of parameters θ and δ, 
and can be written as: 

BC %& �', 5
 = ∑ BC %&�  �', 5
D
�4# =  ∑ BCE∑ %&�|�  �'��7���5�� 8

�4# FD
�4#  (8) 

Maximizing the above maximum likelihood function gives asymptotically 
efficient estimates of all parameters. The estimated parameters can then be used to 
compute (unconditional) posterior class membership probabilities for each technology, 
and (conditional) posterior class membership probabilities for both efficient and 
inefficient firms. The unconditional posterior probabilities can be first used to allocate 
each firm to a particular technology-class, and each firm can then be allocated to a 
fully-efficient or inefficient class conditional to the technology-class allocation. 

  

3. Data 
 

The data set used in this study is a balanced panel for the Norwegian distribution 
utilities for the years 2004 to 2011.8 Norway presents a particularly suitable context and 
interesting case to implement the proposed methodology. First, Norway was among the 
first countries to introduce incentive-based regulation and efficiency benchmarking in 
1997 (based on the DEA technique) in the electricity sector. Therefore, much of the 
managerial inefficiency of the networks has over time been removed. Second, Norway 
is the only country that explicitly incorporates quality of service in the form of the cost 
of non-delivered energy using estimated customer willingness-to-pay as an integrated 
part of the efficiency benchmarking exercise in incentive regulation of distribution 
networks. Third, unlike most countries, the Norwegian electricity sector consists of a 
large, though slowly declining (due to mergers and acquisitions), number of network 
utilities which allows the use of more sophisticated analytical methods. Finally, the 
Norwegian energy regulator has systematically examined the effects of environmental 
factors such as geographic and weather conditions on cost and service quality 
performance of the utilities and has reflected these in the efficiency benchmarking 
models (see, e.g., Growitsch et al, 2012; Orea et al., 2012) . In particular, the regulator 
has analyzed (selected) a large (small) number of geographic and weather variables that 
might affect the firms’ cost function.  

We specify a simple cost model that uses, following the Norwegian benchmarking 
approach, social costs instead of total production costs as the dependent variable. In 
addition to operating expenses (OPEX), capital depreciation and its opportunity cost, 

                                                           
8
 Data for the period 2000-2003 is not used due to missing values in key variables, such as network size 

or cost of energy not supplied. Also, several firms were dropped due to lack of information on contextual 
variables. The data used is not a complete balanced panel because some observations still had 
unreasonable data, e.g. OPEX or CENS equal to zero, or negative values for new investment. 
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our cost variable includes external quality costs. External quality costs i.e. cost of 
energy not supplied are calculated by multiplying the length of service interruptions 
with the estimated customer willingness-to-pay for an uninterrupted energy supply 
(CENS = cost of energy not supplied) plus the cost of network energy losses. All 
monetary variables are measured in 1000 NOK and in 2004 real terms.9 

Regarding the cost drivers, our cost frontier includes three outputs (CUS = the 
number of final customers, NL = network length, and DE = delivered energy measured), 
and three input prices (PK = capital price. PE = energy price, and PL = labor price). 
While NL is measured in kilometers, DE is measured in megawatt-hours. On the other 
hand, whereas the labor price is the average salary in the electricity sector, and the price 
of capital is the sector regulator’s (NVE) rent for cost of capital, the energy price is the 
average system price from NordPool Spot market. In addition to the economic variables 
we add a small number of environmental variables in our analysis. In particular, and 
following the Norwegian regulator, we include two weather variables (WIND = average 
reference wind, and WINDEX = average wind exposure), one geographic variable (DIS 
= distance to coast), and the percentage of overhead lines (OH) of total network length 
as additional cost drivers. As it is expected that the effect of environmental conditions 
on firms’ costs might depend on the technological characteristics of the network, we 
have interacted the percentage of overhead lines with WIND, WINDEX and DIS.  

The technological-class probabilities are also functions of OH in order to test 
whether other and unobserved technological differences are related to the percentage of 
overhead lines. Regarding firms’ inefficiency, we use the percentage of overhead lines 
and network length variables (i.e. OH and NET) and the number of stations (ST) either 
as inefficiency determinants or determinants of being inefficient. The time trend is also 
included as a determinant of firms’ inefficiency in order to check whether the 
Norwegian regulation system has been successful to promote gains in firms’ 
performance.  

 

[Insert Table 1] 

 
4. Results 

 
 
 We estimate four alternative model specifications for empirical analysis. Table 2 
shows the estimated coefficients of the cost models. The RSCFG model assumes that 
the inefficiency term follows a heteroscedastic half-normal distribution.10 This 
empirical strategy not only allows us to get consistent estimates of both frontier 
coefficients and firm-specific inefficiency scores, but also to incorporate determinants 
of firms’ inefficiency. The ZISF model is a panel-data and heteroscedastic version of 
the model introduced by Kumbhakar et al. (2013). Unlike these authors, the inefficiency 
term is again specified to be firm-specific. Although this model allows us to distinguish 
between fully efficient and inefficient utilities, it disregards the presence of unobserved 
differences in technology. In contrast, the LCSF model allows us to control for 
unobserved technological differences among firms. This model does not distinguish 
                                                           
9 The consumer price index (CPI) has been used to deflate all monetary variables. 
10

 This model is labelled as RSCFG as it was introduced by Reifschneider and Stevenson (1991), Caudill 
and Ford (1993) and Caudill, Ford and Gropper (1995). The efficiency covariates in these papers are 
treated as determinants of the variance of inefficiency term. 
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between fully efficient and inefficient utilities. In this sense, we hereafter state that the 
LCSF model does not control for unobserved behavioral differences among firms.11 
Finally, the NLC model takes into accounts both behavioral and technological 
differences among firms using the specification outlined in Section 2.12  

As our results for firms technology and efficiency might depend on the empirical 
strategy followed to allow for unobserved differences in both technology and firms’ 
performance, it is worth examining the goodness-of-fit of the four alternative 
specifications of our cost model. Given the estimated values of the likelihood function 
in Table 2, we can conclude that any model selection test (such the well-known AIC 
and BIC tests) would allow us to reject the RSCFG model in favour of the ZISF model. 
This implies that controlling for unobserved differences in firm inefficiency is important 
in our application. The RSCFG model would also be rejected in favour of the LCSF 
model, indicating that controlling for unobserved differences in firm technology and in 
the determinants of firm inefficiency is also important in our application. The previous 
three specifications would, in turn, be rejected in favour of the NLC model that allows 
us to include both types of unobserved heterogeneity. Based on these comparisons, we 
can conclude that the NLC model is preferred, and that results for firm technology and 
efficiency using the more restrictive RSCFG, LCSF and ZISF models should be 
interpreted with caution. 

 

[Insert Table 2] 

 

We estimate a (restricted) translog cost function that can be interpreted as a second-
order approximation to the companies’ underlying cost function. We therefore add the 
input prices to our cost function because they do not vary across utilities, but vary over 
time. This precludes using quadratic terms and interactions with these variables. As 
usual, homogeneity of degree one in prices is imposed by normalizing cost, labour price 
and capital price with the energy price. Each explanatory variable is measured in 
deviations with respect to its mean, such that the first-order coefficients in Table 2 can 
be interpreted as the cost elasticities/derivatives evaluated at the sample mean.  

In general, all models perform quite well as all of the first-order coefficients have 
the expected sign and their magnitudes are also reasonable from a theoretical point of 
view. The first-order coefficients of all three outputs are positive and statistically 
different from zero. A similar observation can be made about the coefficients of input 
prices, which are also positive and statistically significant. The sum of the first-order 

                                                           
11

 Here we are using an inaccurate language as the above statements are accurate when homoscedastic 
versions of the LCSF and ZISF models are estimated. In this case the LCSF only captures the unobserved 
differences in technology, whereas the ZISF model only captures unobserved differences in firm 
performance. We also estimated homoscedastic versions of our cost models, but the performed model 
selection tests rejected these more restrictive specifications in favor of their heteroscedastic counterparts, 
and results were robust to this issue.  
12 It should be noted that the heteroscedastic specification of the LCSF model allows estimation of the 
different coefficients associated with the determinant of the inefficiency term. In this sense, this model is 
able to control for unobserved differences in firms’ performance as the ZISF model. However, while 
these differences in the LCSF model have only to do with the magnitude of the inefficiency term, the 
behavioral differences captured in the ZISF model have also to do with the existence or absence of this 
term. Therefore, our heteroscedastic ZISF model is able to capture two subtle aspects of firms’ 
inefficiency. The common-technology assumption used in the ZISF model is in turn relaxed in the NLC 
model. 
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coefficients of customer numbers and energy delivered is less than one, indicating that 
electricity distribution networks have natural monopoly characteristics when additional 
network is not required to meet additional demand.13 The frontier coefficient of OH is 
negative and statistically significant in all models, indicating that the larger the 
percentage of overhead lines, the smaller is the total costs. This result indicates that, 
although underground cables are probably negatively correlated with CENS and reduce 
OPEX, they are more costly and increase the total costs. The LCSF and NLC models in 
turn indicate that the technology in this industry exhibits some heterogeneity. Although 
the output elasticities evaluated at the sample mean are similar in the two classes in both 
models, the technological heterogeneity can be particularly appreciated when we 
compare the second-order coefficients of the three outputs. 

The estimated coefficients for the weather variables (WIND and WINDEX) and the 
distance to coast geographic variable (DIS) suggest that there are notable differences 
among the utilities in costs attributed to different environmental conditions. It is worth 
mentioning that most coefficients of OH interacting with these three contextual 
variables are statistically significant, indicating that the effect of any of the weather 
variables is larger when the importance of overhead lines increases. While the 
coefficients of WIND are negative (but rarely significant), the effect of WINDEX on 
firms’ costs is mostly significant and positive indicating that a higher exposure to wind 
implies larger costs to the distribution networks. On the other hand, the coefficient of 
the distance to the coast is always negative. This might indicate that inland weather 
conditions are, as expected by the regulator, likely to be less severe than coastal weather 
conditions.  

In addition to the frontier parameters, Table 2 displays the coefficients of the 
variables that are related to the inefficiency term, as determinants of either the 
inefficiency term (uit|j) or the probability of being inefficient (∏i|j). Several results, most 
of them common to the four alternative specifications of our cost model, are worth 
mentioning. First, the negative sign for the time trend also suggests, although not 
always significant, that the regulation system in Norway has been able to encourage 
firms to improve their performance during the sample period. The improvement in 
firms’ performance is clear in Figure 1, where we depict the temporal evolution of the 
average efficiency scores that are obtained using our four specifications.14 

 

[Insert Figure 1] 

 

Second, we obtain a negative coefficient for NL in both RSCFG and LCSF 
models indicating that larger utilities tend to be more efficient than smaller utilities. In 
contrast, the positive coefficients of ST and OH indicate that it is more difficult to 
manage firms with many stations and longer overhead lines. It is interesting that, the 
aforementioned efficiency determinants do not appear to be significant in one of the 
classes of the LCSF model. Hence, we do not find evidence that these technology 
features make the operation of the distribution networks more costly. They are also not 
statistically significant when we move to the ZISF and NLC models that distinguish 
between inefficient and fully efficient firms.  

                                                           
13 Also Salvanes and Tjøtta (1998) find evidence of natural monopoly characteristics in the Norwegian 
electricity distribution networks. 
14

 This figure will be further examined later on. 
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While the technological variables included as efficiency determinants are still 
significant in the ZISF model, the probability of being inefficient does not depend on 
any covariate. This indicates that each firm has the same probability of being fully 
efficient, and they cannot use their size or other characteristics of their network as 
reason for not being 100% efficient. A similar comment can be made regarding one of 
the classes of the NLC model as the probability of being inefficient in this class does 
not depend on any covariate. In contrast, the probability of being inefficient in the other 
class decreases (increases) with network size (number of stations). These two outcomes 
therefore reinforce the previous results NL and ST were only included as determinants 
of firms’ inefficiency.  

We compare in Table 3 the sample partition using our preferred NLC model that 
controls for unobserved differences in technology and firm behaviour with those 
obtained using the more restrictive LCSF and ZISF models that only capture differences 
in one of the above-mentioned dimensions, and hence their sample partitions should be 
interpreted with caution as unobserved differences in technology might be labelled 
incorrectly as differences in behaviour, and vice versa. Compared to our preferred 
model that allocates a 40 and 60% of the observations to Class 1 and Class 2 
respectively, the LCSF model slightly balances this allocation as the smaller (larger) 
class now includes a 44% (56%) of the sample. Note as well that, while all firms in the 
LCSF model are inefficient to some extent, the set of inefficient firms in the second 
class of the NLC model only represents a 43% of all observations allocated to this 
class.15 Therefore, the efficiency scores of these firms in the LCSF model are expected 
to be seriously biased. 

The ZISF model distinguishes between both types of firms. However, as it 
ignores the existence of unobserved differences in technology, it only identifies 42 firms 
as fully efficient firms that represent a 35% of the observations. The NLC model 
identifies a larger number of fully efficient firms (i.e. 48) that represent a 40% of the 
sample. In other words, in the ZISF model, some firms are wrongly labelled as 
inefficient because their inefficiency scores have been computed using a common cost 
frontier to all firms and common efficiency coefficients (two assumptions that are 
rejected in our application). In addition, other firms in the ZISF model are wrongly 
labelled as fully efficient as only 11 of the fully efficient firms of the ZISF model are 
identified as fully efficient using our preferred NLC model. 

 

[Insert Table 3] 

 

Figure 1 depicts the average efficiency scores of all firms in the case of the 
RSCFG and LCSF models - where there are no fully efficient firms - and the average 
efficiency scores of only those firms that are not fully efficient in the ZISF and NLC 
models. Our efficiency estimates are high, ranging from 87 to 97%. Similar figures are 
obtained in Miguéis et al. (2012) using a DEA method for the period 2004 to 2007, and 
in Growitsh et al. (2012) using a SFA approach for the 2001-2004 period. The latter 
authors also found that efficiency estimates strongly depend on the empirical strategy to 
control for observed and unobserved heterogeneity. The average efficiency level of the 
inefficient firms in the ZISF model is 87%. The estimated efficiency level of these firms 
in the RSCFG model is much higher, 97%, indicating that ignoring the existence of two 

                                                           
15

 This percentage increases up to 85% in the first class. 
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types of firms (i.e. inefficient vs. fully efficient) tends to bias upwards the efficiency 
scores of those firms that are not fully efficient. The same comment can be made 
regarding the inefficient firms of the second class of the NLC model as their average 
efficiency level (91%) is far from that estimated (96%) using the RSCFG model.16  

Table 4 shows the coefficients of correlation between pairs of efficiency scores 
obtained using our alternative specifications of the cost model. The table provides the 
coefficients of correlation using all observations in our sample or the observations 
allocated to particular technological or behavioural classes. The computed coefficients 
are often quite low, indicating that ignoring unobserved differences either in technology 
or in firms’ behaviour might seriously bias the ranking of firms in accordance to their 
estimated efficiency levels. For instance, the coefficient of correlation between the 
RSCFG and LCSF models is only about 55% (49% using our preferred NLC model). 
This correlation declines up to 33% if we only use the observations belonging to the 
second class of the LCSF model. The correlation between LCSF and NLC models is 
relatively large, but far from 100% in the case of the second class. On the other hand, 
the coefficient of correlation between the ZISF model and other three models is lower 
than 50%. Regarding our preferred NLC model, the coefficient of correlation is only 
about 42%. This correlation drops up to 25% if we only use the observations belonging 
to the first class of this model. 

  

[Insert Table 4] 

 

5. Conclusions 
 

In many countries, the electricity regulators aim to measure the network utilities’ 
efficiency against best practice performance. Errors in identifying the correct 
benchmark firms or measuring their efficiency has important financial implications for 
all the less efficient firms against which they are compared. For this reason, obtaining 
reliable measures of firms’ inefficiency often requires controlling for unobserved 
differences in the firms’ technology or in the geographical and weather conditions under 
which each utility operates. Several well-known latent class stochastic frontier models 
now allow researchers (and regulators) to account for the above-mentioned technology 
heterogeneity.  

The regulators would also be interested in identifying the fully efficient network 
utilities that can be used as “reference networks” for other (comparable) utilities. The 
‘zero inefficiency stochastic frontier’ model introduced recently by Kumbhakar et al. 
(2013) can be used to achieve this aim. However, this model does not control for 
unobserved differences in technology or environmental conditions.  

The present paper extends the ZISF approach to take into account the heterogeneity 
in firms’ technology as well as in their environmental conditions. We take advantage of 
the differences in the nature of both sources of unobserved heterogeneity to develop a 
nested latent class (NLC) model. The behavioral differences are modeled using two 

                                                           
16

 However, the average efficiency level of the inefficient firms in the first class of the NLC model is not 
seriously biased as the efficiency score using the RSCFG model is of similar magnitude on average. 
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ZISF models that are in turn nested in a latent class structure that aims to capture 
unobserved differences in technology or environmental conditions. To our knowledge, 
the present study is the first to propose a nested latent class model to distinguish 
between fully efficient and inefficient firms when the underlying technology is 
heterogeneous. The present paper study is also the first to introduce the zero-
inefficiency approach in a regulatory context. 

We illustrate the proposed models with an application to the Norwegian distribution 
network utilities for the period 2004-2011. Following the Norwegian benchmarking 
approach, four alternative specifications of a cost model are estimated, where a social 
measure of firms’ costs is used as dependent variable. In addition to the traditional 
output and input prices, we have added a number of relevant environmental variables as 
cost drivers in our analysis, as well as the percentage of overhead lines, i.e. the most 
important characteristic of firms’ networks.  

In general, all models perform quite well as the cost elasticities evaluated at the 
sample mean have the expected signs and their magnitudes are quite reasonable from a 
theoretical point of view. However, based on the values of the estimated likelihood 
functions, we concluded that the NLC model is the preferred model, and that the results 
for the firms’ technology and efficiency using the more restrictive RSCFG, LCSF and 
ZISF models should be interpreted with caution.   

Overall our results suggest the presence of notable differences among utilities in 
costs attributed to different weather conditions and locations. On the other hand, we 
have found that the regulation framework in Norway has been able to encourage firms 
to improve their performance during the sample period. We have also obtained evidence 
about the relationship between firms’ inefficiency and some characteristics of their 
networks. In particular, most of our specifications suggest that larger networks tend to 
be more efficient than smaller ones, and that it is more difficult to manage firms with 
more numerous stations and overhead lines.  

We have found that our preferred model and the more restrictive LCSF and ZISF 
models split the sample into groups in rather different ways. Therefore, the efficiency 
scores in both LCSF and ZISF models are expected to be somewhat biased. We have 
also found that our NLC model identifies a larger number of fully efficient firms than 
the ZISF model, indicating that some firms in the ZISF model are wrongly labelled as 
inefficient. In addition, other firms are wrongly labelled as fully efficient by the ZISF 
model. 

Our efficiency estimates are somewhat high and similar to those obtained in the 
literature using both parametric and non-parametric approaches. However, we have 
found that the efficiency scores of inefficient firms tend to be biased upwards if we do 
not distinguish between inefficient and fully efficient networks. The computed 
coefficients of correlation between pairs of efficiency scores are often quite small. 
Overall, our results indicate that the efficiency scores of our models not only might be 
biased if we ignore unobserved differences in technology (see previous literature), but 
also if we are not able to separate the fully efficient networks from the inefficient 
networks.  
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Table 1. Descriptive statistics of the data. 

  Mean St.Dev. Min Max 

COST 77700.02 132024.01 2343.05 793884.71 

PK 0.06 0.01 0.05 0.08 

PL 163.67 16.99 139 189.5 

PE 331.02 73.94 234.6 436.3 

CUS 16753.17 33229.86 348 182746 

ST 809.9 1381.62 29 9428 

DE 432406.39 875129.47 6915 5200000 

NL 661.83 1036.34 30 6542 

WIND 25.5 2.44 22 31 

WINDEX 5.28 1.04 2.71 8.13 

DISTANCE 53824.79 55649.33 190.96 196377 

OH 0.68 0.19 0.14 0.97 
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Table 2. Parameter estimates.  

  RSCFG ZISF LCM NESTED LCM 

Parameters Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio 

Cost frontier function      Class 1 Class 2 Class 1 Class 2 

Intercerpt 10.554 901.9 10.493 1923.6 10.454 699.5 10.623 1220.8 10.444 541.2 10.611 1313.2 

lnCUS 0.335 9.963 0.377 18.741 0.329 10.227 0.370 15.851 0.373 6.744 0.384 11.380 

lnNL 0.465 26.567 0.504 42.258 0.499 18.268 0.509 34.275 0.511 15.429 0.479 36.922 

lnDE 0.116 3.988 0.063 3.392 0.132 4.199 0.087 4.188 0.093 2.232 0.088 2.854 

0.5·lnCUS2 0.176 1.067 0.268 2.486 -1.043 -3.327 0.035 0.227 -0.961 -1.942 0.007 0.053 

0.5·lnNL2 -0.004 -0.085 -0.108 -4.342 -0.246 -6.008 0.169 4.302 -0.254 -2.732 0.249 5.920 

0.5·lnDE2 0.071 0.884 0.088 1.784 -0.256 -1.115 0.018 0.151 -0.149 -0.434 0.007 0.061 

lnCUS·lnNL -0.041 -0.559 0.008 0.195 0.689 7.296 -0.018 -0.269 0.764 6.441 -0.070 -1.273 

lnCUS·lnDE -0.115 -1.007 -0.201 -2.648 0.580 2.233 0.045 0.352 0.473 1.152 0.084 0.711 

lnNL·lnDE 0.047 0.775 0.081 2.309 -0.489 -6.537 -0.134 -2.449 -0.550 -6.112 -0.144 -2.975 

lnPK 0.187 7.300 0.268 7.978 0.235 5.100 0.199 5.986 0.226 3.932 0.200 6.967 

lnPL 0.764 17.398 0.670 9.470 0.678 8.895 0.769 11.898 0.687 7.743 0.771 12.301 

OH -0.289 -6.162 -0.352 -10.186 -0.442 -7.101 -0.443 -5.934 -0.470 -7.048 -0.202 -4.116 

WIND -0.005 -1.602 -0.003 -1.792 0.002 0.676 0.005 1.649 0.000 -0.039 0.002 0.568 

WINDEX 0.019 2.620 0.021 4.720 -0.035 -4.963 -0.007 -1.071 -0.034 -3.323 0.000 0.008 

lnDIS -0.015 -3.741 -0.009 -3.938 -0.017 -5.127 -0.018 -5.502 -0.025 -4.401 -0.017 -3.865 

OH·WIND -0.094 -5.300 -0.108 -9.720 -0.116 -9.518 -0.170 -6.892 -0.140 -6.067 -0.128 -6.392 

OH·WINDEX 0.225 6.241 0.248 11.359 0.292 8.545 0.413 5.169 0.344 7.260 0.340 4.239 

OH·lnDIS -0.101 -4.855 -0.105 -7.191 -0.032 -1.276 -0.047 -1.744 -0.014 -0.346 -0.022 -0.602 

Random noise                      

Intercept -2.080 -82.14 -2.484 -77.23 -2.618 -65.87 -2.542 -66.31 -2.693 -49.031 -2.628 -62.49 

             
Note: shadowed coefficients indicate they are significant at 10%. 
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Table 2. Parameter estimates (Cont.) 

  RSCFG ZISF LCSF NLC 

Parameters Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio 

Inefficiency term                      

Intercept -1.743 -6.053 -1.696 -16.597 -1.355 -2.540 -3.567 -9.848 -1.242 -1.824 -1.978 -7.341 

t -0.538 -2.465 -0.020 -0.946 -0.607 -1.790 -0.040 -0.911 -0.511 -1.574 -0.057 -1.495 

lnNL -1.866 -1.947 -0.805 -4.900 -0.512 -0.653 -3.795 -3.884 0.036 0.031 0.125 0.140 

lnST 1.950 1.990 0.678 3.911 0.682 0.894 2.538 3.283 0.218 0.191 -0.376 -0.490 

OH 0.661 0.544 0.483 1.922 -0.282 -0.288 4.933 3.887 0.487 0.414 1.526 1.773 

Zero inefficiency-class probabilities                      

Intercept     0.664 2.151         2.537 0.700 -0.080 -0.120 

lnNL     0.072 0.049         -3.305 -0.287 -8.110 -2.160 

lnST     -0.419 -0.306         2.532 0.243 7.342 2.049 

OH     -0.955 -0.522         -5.594 -0.468 -8.797 -1.598 

Technology-class probabilities                      

Intercept         -0.259 -1.326     -0.442 -2.230     
OH         -2.748 -1.706     -2.360 -1.354     

Obs. 957   957   957       957       

LF 612.761   730.02   931.018       971.594       
Mean LF 

0.640   0.763   0.973       1.015    

Parameters 25  29  52    60    

AIC -1175.52  -1402.06  -1758.04    -1823.19    
BIC -1053.93  -1261.01  -1505.12    -1531.36    

Note: shadowed coefficients indicate significance at 10%. 
 



 

  Class 1

SFA 327

ZI 56 

SFA+ZI 383

All 

 

 

Table 4. Efficiency scores. 

Figure 1. 
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Table 3. Sample partition 

NLC LCSF 

Class 1 Class 2 Class 1 Class 2 

327 249 422 535 

 325 0 0 

383 574 422 535 

957 957 

Efficiency scores. Coefficients of correlation 

  RSCFG  LCSF  ZISF  

LCSF 

All 

Class 1 

Class 2 

0.55 

(0.94) 

(0.33) 

 

   

ZISF  

All 

SFA 

0.30 

(0.43) 

0.46 

(0.62) 

 NLC 

All 

Class 1 + SFA 

Class 2 + SFA 

0.49 

(0.89) 

(0.33) 

0.77 

(0.98) 

(0.78) 

0.42 

(0.25) 

(0.71) 

        

 

Figure 1. Annual efficiency scores 
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