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Abstract

Since the 1990s, electricity distribution networksmany countries have been
subject to incentive regulation. The sector regutaaim to identify the best performing
utilities as “reference or frontier firms” in order determine their relative efficiency of
other firms. This paper develops a nested lateatsc(NLC) model approach where
unobserved differences in performance are modeldgutwo ‘zero inefficiency
stochastic frontier’ (ZISF) models nested in a€ldtclass stochastic frontier’ (LCSF)
model. This is in order to capture the unobserviférdnces due to technology or
environmental conditions. This model allows reskars and regulators to identify
reference networks that are persistently 100%iefftovhen the underlying technology
is heterogeneous. We illustrate the proposed madti an application to the
Norwegian distribution network utilities for the nud 2004-2011. We find that the
efficiency scores in both LCSF and ZISF modelskaased, and some firms in the ZISF
model are wrongly labelled as inefficient. Convérsmefficient firms can be wrongly
labelled as being fully efficient by the ZISF model
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1. Introduction

Since the worldwide reform of the electricity sestm the 1990s, many network
utilities are incentive regulated. The reform trecwincided with some significant
contributions to regulatory economicsh(eifer, 1985 Laffond and Tirole, 1993 The
aim is to provide the natural monopoly firms witlténtives to improve their operating
and investment efficiency and to ensure that comssrbenefit from the gains. The
main methods used to achieve these objectives ramentive mechanisms, which
provide the firms with financial rewards and peieasltlinked to their performance
(Joskow, 2008

In many instances, the regulators aim to measwditims’ relative efficiency
against best practice and performance using par@nagtd non-parametric techniques
(seeHaney and Pollitt, 20)3 However, the sector regulators normally identifgre
than one efficient benchmark firm as they havergeland diverse number of utilities in
the sector. Statistical benchmarking methods haen lused to determine the relative
efficiency of individual firms’ operating costs arsgrvice quality compared to their
peers- The efficiency estimates are based on measuringdp between the actual cost
of the firm (production) and an optimal point or ttost (production) frontier, which is
estimated from the available dataset.

The methodology developed in the paper is mott/&e theoretical as well as
empirical regulatory issues. First, since the adopbf efficiency benchmarking for
incentive regulation in the 1990s, the expectatias been that these methods will
reduce he efficiency gap in the sector and that tiee the regulation can transit to a
yardstick regulation model based on average sepwformance as benchmark.
However, although average efficiency among the difmas improved, much of the
efficiency gap among the firms has persisted. Bathe reason for this can be that
technological heterogeneity among the firms haseen taken into account.

Second, accounting for or failing to account fotehegeneity has, from the start,
been a contentious point between the regulatorgteéirms. As regulators reward or
punish firms according to their (in)efficiency lévéhe reliability of these scores is
crucial for the fairness and effectiveness of tlegutatory framework. Errors in
identifying the correct benchmark firms or measgritheir efficiency has also
significant financial implications for the less iefént firms against which they are
compared. Obtaining reliable measures of firmsfficency requires controlling for
the contextual factors under which each utility rapes?

In many countries, the utilities have argued agddhmes unfair effects of failing to
account for the heterogeneity among the firms. He UK, heterogeneity among
distribution networks has been addressed througte qwost-measurement adjustments
to utility costs. In Brazil, the regulator sepagatke distribution networks into two size
groups (small and large) according to the unitsradrgy distributed using 1 TWh as the
dividing line. In Norway, the regulator uses sone@gyaphic and weather variables in

' Jamasb and Pollitt (200Ireview the most commonly used approaches and prosicsurvey of
benchmarking studies applied mainly in OECD coestriFor a recent review of the applied literature o
regulation of electricity distribution networks séer instanceKuosmanen (2012).

2 The inclusion of environmental variables (alserefd to as contextual variables or z-variableghén
model is contentious in the literature on efficig@malysis and has generated the development efaev
models (for a review of this topic in Stochastioftier Analysis (SFA) and Data Envelopment Analysis
(DEA) see, for instance€phnson and Kuosmanen, 20afAdLlorca et al. 201)



the benchmarking models and also separates thenedgnid-voltage networks from
low-voltage distribution utilities in benchmarkimgodels. In Chile, The regulator has
used six different reference norm firms to accdonthe heterogeneity among the real
firms. In Sweden, the larger networks strongly adythat the norm models used by the
regulator disadvantaged large networks. Given dbrgext, methodologies designed to
improve the accuracy of benchmarking methods amsithee to technological and
environmental heterogeneity can also help in degidhe true efficiency gap in the
sector and the timing for moving to yardstick reguan stage.

Recently, latent class stochastic frontier (heegaftCSF) models that combine
the stochastic frontier approach with a latent sclaucture have appeared in the
efficiency analysis literature to account for teclogy heterogeneity among the firms.
Latent class models, also called finite mixture slsdhave been used in several fields
of research (seBeard et al., 1991or Gropper et al., 199%®rea and Kumbhakar, 2004
Greene, 2005for some applications). A conventional LCSF moastumes there is a
finite number of technologies (classes) underlyitge data and allocates
probabilistically each firm in the sample to a paufar technology. Once the benchmark
technology of each firm is identified, its ineffcicy in relation to that benchmark
technology is measured from a specific distribut{erg. half-normal) in which the
parameters might differ.

Kumbhakar et al. (2013have taken advantage of the latent class strudture
introduce the so-called ‘zero inefficiency stociafontier’ (ZISF) model. This model
overlooks the above-mentioned issue of unobsenifidrehces in technology or
contextual factors, but allows the researcher stirdjuish between fully efficient firms
and firms that tend to be inefficient to some ektémthis sense, we hereafter state that
the ZISF is able to deal with unobserved behavidraterogeneity, i.e. hidden
differences in firms’ performance. The ZISF modebppealing in benchmarking, as it
helps regulators to identify the utilities that cdae used as “reference networks” for
other (comparable) utilitiesThe present paper uses the ZISF approach to daterm
this reference network, while extending this tmalske into account the technological
heterogeneity as well as geographical and weathstittons among the firms.

Kumbhakar et al. (2013ssume there are only two types of firms (efficiamd
inefficient). While the inefficiency distributiorof fully efficient firms is a point mass at
0, the degree of inefficiency for inefficient firms captured by any of the array of
standard one-sided distributions, such as half-agrexponential, or truncated normal.
However, they use the latent class structure tmtifye unobserved differences in
performance, assuming the estimated technology gothe same for all firms.
Consequently, they abstract from technological rogeneity among the firms and
focus exclusively on the distribution of inefficen

The finite mixture models have traditionally beesed to identify groups of
firms that operate with different operating coratis or use different technologies. The
issue is that the presence of one technology aothands not directly observed by the
researcher. At most, only partial technologicatovironmental indicators are available.

% Several South American countries (e.g., Argeni@iile, and Peru) use a rather similar concepledal
“Model Company”, to determine the allowed revenuwsallowed prices, of distribution companies (see
Cossent, 2013 This approach relies on “building” engineerimgftom-up models of a network company
as benchmarking reference for a set of real finvisch is characterized in terms of network assats a
associated costs, overhead structure and commeostd, and the density degree (urban vs. ruraheof
sectors or areas operated by each firm.



If the underlying data generation process only ive® two technologies and there are
only two types of firms (efficient and inefficientyve could then estimate a latent class
model with four classes in which both technologiaatl efficiency parameters differ.
As both sources of unobserved heterogeneity (beha\vand technological) are treated
symmetricallyin such model, it is not certain that the diffezes in performance are
caused by differences in behavior or technology e versa. In addition, it is not
possible to distinguish between the probabiliti€siaring the same technology (i.e.
being comparable firms) and probabilities of sharéimilar performances (i.e. being
fully efficient or inefficient)’ The difference in the nature of behavioral and
technological differences is not a semantic pde. take advantage of the difference in
the nature of both of these sources of unobsereterdgeneity to develop mested
latent class model (hereafter NLC model) wherebigteavioral differences are modeled
using two ZISF models. These are in turn nestedlatent class structure to capture the
unobserved differences in technology or environaerdnditions.

To our knowledge, the present study is the firsptopose ariestedlatent class’
model. Hence, we improve the method Kmmbhakar et al. (2013and provide a
framework to distinguish between the fully effidieand inefficient firms in a sample
when the underlying technology is heterogeneous. gdper is organized as follows.
The LCSF and ZISF models and the econometric spatidn of our model are
introduced in Section 2. The data used in the d@ogbianalysis is presented in Section3.
The results obtained are presented and analyz8ddtion 4. Finally, Section 5 offers a
summary and conclusions.

2. Empirical model

This section develops a nested latent class moldetewnobserved differences
in performance are modeled using two ZISF modededein a LCSF model that, in
turn, aims to capture the unobserved differences tdutechnology or environmental
conditions. Seé&igure 1for a graphical description of the proposed model.

[Insert Figure 1 here]

Let us first assume that there araifferent technologies, and that each firm
belongs to one and only one of these technologiext, we adapt in a panel data
setting the ZISF model introduced by Kumbhakarle{(2013) to identify behavioral
differences among electricity distribution firmshémodel assumes that some firms are
fully efficient, while others tend to be inefficieto some extent.

Conditional on technology (=1,...J), the general specification of the ZISF
model can be written as follows:

InCie = f(xi) + vigj + Wiey (1)

wherei stands for firmst for time,y;; is a measure of firms’ cost or other performance,
Xt is a vector of cost drivers,,; is a noise term that follows a normal distributiand

* Kumbhakar et al. (2013, p. 68tate that “it is not clear from the finite mixtuepproach whether
identifying a group of efficient firms is actualfyredicated on overfitting from allowing technologlic
heterogeneity across the regimes”.



u;y; Is @ one-sided error term capturing firms’ ingéfrecy. While in the “inefficient”
class we assume thatit|j~N+(0,aﬁ),5 the "fully efficient" class is defined by
imposing that the variance of the pre-truncatednabistribution is zero, i.ex?2 = 0.°

In other words, while the relevant model for theffitient firms is the traditional
stochastic frontier model with two random terms (8&del), the relevant model for the
fully efficient firms is the neoclassical cost motieat does not include any inefficiency
term (ZI model).

As whether a particular firm is 100% efficient ootnis not known to the
researcher, the probability of being fully efficieor inefficient should be estimated
simultaneously alongside other parameters of thdeind.et us denote the probability
of being inefficient as[];;. As we are interested in identifying firms thatvéa
persistently been fully efficient during the sampkriod, we do not allov];; to vary
over time! Following Greene (2005) we parameterize the prilibabof being
inefficient as a multinomial logit function:

exp(¥;z;)
1+exp(y]{zi)

My;(y;) = (@)
where z is a vector of firm-specific variables which indloce whether a firm is
inefficient or not. The contribution of firmto theconditional (on technology-clasp
likelihood is:

LFy; (6;) = LEST - Ty (v;) + LEF{[1 = Ty (y;)] 3)

where § encompasses all parameters associated with tegynclassj. LFiff is the
likelihood function of a SF model with two randomrmms, which is the applicable
likelihood function when firms are inefficient, aMif} is the likelihood function of a
normal random variable, which is the proper funttishen firms are fully efficient.
Following Greene (2005, eq. 35), we model theselifatihood functions as follows:

LF} = Tl{=1 LF;f; (4)
LF{} = [i=1 LFY; (5)

We next use the latent class structure to iderdifferences in technology
among electricity distribution firms. Thenconditionallikelihood for firmi is obtained
as the weighted sum of their technology-specitelihood functions, where now the
weights are probabilities of technology-class mersitie, P;;. That is:

® For notational ease we here assume homoscedastiibdiions for the inefficiency term. As this
assumption could bias our parameter estimates, see heteroscedastic specifications ayf in our
empirical application.

® We thank William Greene for reminding us that theffitient” class cannot be defined by simply
imposingu;,; = 0, since a continuous random variable with a positigriance does not take the value
zero.

’ As regulators might be more interested in the tesfor specific regulatory periods, we will relehist
assumption in our empirical application by dividitige sample period into two subperiods that refer t
two different price control review periods.



where 6=(04,...0;), 0=(d1,...9;), and the technology-class probabilities are again
parameterized as a multinomial logit model:

exp(8;4;)

— =1,.., 7
1+3]27 exp(8}a) / / @

P;(8;) =
whereq; is a vector of firm-specific variables. Therefatee overall likelihood function

resulting from (2) and (7) is a continuous functafrthe vectors of parametef?sando,
and can be written as:

Maximizing the above maximum likelihood functionvgs asymptotically
efficient estimates of all parameters. The estichgiarameters can then be used to
compute (unconditional) posterior class memberghgbabilities for each technology,
and (conditional) posterior class membership proiti@s for both efficient and
inefficient firms. Theunconditionalposterior probabilities can be first used to allec
each firm to a particular technology-class, andhef@en can then be allocated to a
fully-efficient or inefficient clasgonditionalto the technology-class allocation.

3. Data

The data set used in this study is a balanced gan#he Norwegian distribution
utilities for the years 2004 to 208 Norway presents a particularly suitable context an
interesting case to implement the proposed metloggoFirst, Norway was among the
first countries to introduce incentive-based regofaand efficiency benchmarking in
1997 (based on the DEA technique) in the elecyriséctor. Therefore, much of the
managerial inefficiency of the networks has overetibeen removed. Second, Norway
is the only country that explicitly incorporatesatjty of service in the form of the cost
of non-delivered energy using estimated customédmgmess-to-pay as an integrated
part of the efficiency benchmarking exercise inemiive regulation of distribution
networks. Third, unlike most countries, the Norveegelectricity sector consists of a
large, though slowly declining (due to mergers aecduisitions), number of network
utilities which allows the use of more sophisticanalytical methods. Finally, the
Norwegian energy regulator has systematically erathithe effects of environmental
factors such as geographic and weather conditiamscast and service quality
performance of the utilities and has reflected ¢hes the efficiency benchmarking
models (see, e.gGrowitsch et al, 203,20rea et al., 2012 In particular, the regulator
has analyzed (selected) a large (small) numbeeog@phic and weather variables that
might affect the firms’ cost function.

We specify a simple cost model that uses, followtlmgy Norwegian benchmarking
approachsocial costsinstead of total production costs as the dependanable. In
addition to operating expenses (OPEX), capital @gption and its opportunity cost,

® Data for the period 2000-2003 is not used due &simg values in key variables, such as network size
or cost of energy not supplied. Also, several fimrese dropped due to lack of information on coniakt
variables. The data used is not a complete balamp=atel because some observations still had
unreasonable data, e.g. OPEX or CENS equal to aeregative values for new investment.



our cost variable includes external quality cogigternal quality costs i.e. cost of
energy not supplied are calculated by multiplyihg tength of service interruptions
with the estimated customer willingness-to-pay &r uninterrupted energy supply
(CENS = cost of energy not supplied) plus the afshetwork energy losses. All
monetary variables are measured in 1000 NOK a20@4 real term§.

Regarding the cost drivers, our cost frontier idels three outputs (CUS = the
number of final customers, NL = network length, &1l = delivered energy measured),
and three input prices (PK = capital price. PE ergwp price, and PL = labor price).
While NL is measured in kilometers, DE is measurethegawatt-hours. On the other
hand, whereas the labor price is the average saldhg electricity sector, and the price
of capital is the sector regulator’s (NVE) rent twst of capital, the energy price is the
average system price from NordPool Spot markeadbfition to the economic variables
we add a small number of environmental variablesun analysis. In particular, and
following the Norwegian regulator, we include tweather variables (WIND = average
reference wind, and WINDEX = average wind exposweg geographic variable (DIS
= distance to coast), and the percentage of ovérlieas (OH) of total network length
as additional cost drivers. As it is expected that effect of environmental conditions
on firms’ costs might depend on the technologidaracteristics of the network, we
have interacted the percentage of overhead lingsWiND, WINDEX and DIS.

The technological-class probabilities are also fioms of OH in order to test
whether other and unobserved technological difiegsrare related to the percentage of
overhead lines. Regarding firms’ inefficiency, weeuhe percentage of overhead lines
and network length variables (i.e. OH and NET) #re@lnumber of stations (ST) either
as inefficiency determinants or determinants ohgenefficient. The time trend is also
included as a determinant of firms’ inefficiency order to check whether the
Norwegian regulation system has been successfulprtamote gains in firms’
performance.

[Insert Table 1]

4, Resaults

We estimate four alternative model specificatitorsempirical analysisTable 2
showsthe estimated coefficients of the cost models. RE&€FGmodel assumes that
the inefficiency term follows a heteroscedastic f-narmal distribution™® This
empirical strategy not only allows us to get coesis estimates of both frontier
coefficients and firm-specific inefficiency scordsjt also to incorporate determinants
of firms’ inefficiency. TheZISF model is a panel-data and heteroscedastic verdion o
the model introduced biyumbhakar et al. (2013WUnlike these authors, the inefficiency
term is again specified to be firm-specifidthough this model allows us to distinguish
between fully efficient and inefficient utilitiest, disregards the presence of unobserved
differences in technology. In contrast, th€ SF model allows us to control for
unobserved technological differences among firmss Tmodel does not distinguish

® The consumer price index (CPI) has been usedflatel@ll monetary variables.

' This model is labelled as RSCFG as it was introdune Reifschneider and Stevenson (1991), Caudill
and Ford (1993) and Caudill, Ford and Gropper ()9%&e efficiency covariates in these papers are
treated as determinants of the variance of inefficy term.



between fully efficient and inefficient utilitiegn this sense, we hereafter state that the
LCSF model does not control for unobserved behavioitiérénces among firms-
Finally, the NLC model takes into accounts both behavioral and tdolical
differences among firms using the specificatiorinet in Section 22

As our results for firms technology and efficiemmight depend on the empirical
strategy followed to allow for unobserved differeadn both technology and firms’
performance, it is worth examining the goodnestofef the four alternative
specifications of our cost model. Given the estedatalues of the likelihood function
in Table Z we can conclude that any model selection testh(ske well-known AIC
and BIC tests) would allow us to reject the RSCF@&leth in favour of the ZISF model.
This implies that controlling for unobserved dif#aces in firm inefficiency is important
in our application. The RSCFG model would also &eated in favour of the LCSF
model, indicating that controlling for unobservatfadences in firm technology and in
the determinants of firm inefficiency is also imfamt in our application. The previous
three specifications would, in turn, be rejectedawvour of the NLC model that allows
us to include both types of unobserved heterogenBédsed on these comparisons, we
can conclude that the NLC model is preferred, dwad tesults for firm technology and
efficiency using the more restrictive RSCFG, LCSkd aZISF models should be
interpreted with caution.

[Insert Table 2]

We estimate a (restricted) translog cost functiat tan be interpreted as a second-
order approximation to the companies’ underlyingtdanction. We therefore add the
input prices to our cost function because they alovary across utilities, but vary over
time. This precludes using quadratic terms andracte®ns with these variables. As
usual, homogeneity of degree one in prices is ira@dry normalizing cost, labour price
and capital price with the energy price. Each exatlary variable is measured in
deviations with respect to its mean, such thaffilseorder coefficients inable 2can
be interpreted as the cost elasticities/derivatexeduated at the sample mean.

In general, all models perform quite well as alltioé first-order coefficients have
the expected sign and their magnitudes are alsomedle from a theoretical point of
view. The first-order coefficients of all three puts are positive and statistically
different from zero. A similar observation can badea about the coefficients of input
prices, which are also positive and statisticalgngicant. The sum of the first-order

" Here we are using an inaccurate language as thee attatements are accurate when homoscedastic
versions of the LCSF and ZISF models are estimatetthis case the LCSF only captures the unobserved
differences in technology, whereas the ZISF moddly a@aptures unobserved differences in firm
performance. We also estimated homoscedastic vergib our cost models, but the performed model
selection tests rejected these more restrictiveifsgations in favor of their heteroscedastic cauptrts,

and results were robust to this issue.

121t should be noted that the heteroscedastic spatitfn of the LCSF model allows estimation of the
different coefficients associated with the deteianinof the inefficiency term. In this sense, thisdal is
able to control for unobserved differences in firmpsrformance as the ZISF model. However, while
these differences in the LCSF model have only tomth the magnitude of the inefficiency term, the
behavioral differences captured in the ZISF modaiehalso to do with the existence or absence of thi
term. Therefore, our heteroscedastic ZISF modehbife to capture two subtle aspects of firms’
inefficiency. The common-technology assumption usethe ZISF model is in turn relaxed in the NLC
model.



coefficients of customer numbers and energy dedives less than one, indicating that
electricity distribution networks have natural mpoty characteristics when additional
network is not required to meet additional dem&hthe frontier coefficient of OH is
negative and statistically significant in all maglelindicating that the larger the
percentage of overhead lines, the smaller is the tmsts. This result indicates that,
although underground cables are probably negativ@iselated with CENS and reduce
OPEX, they are more costly and increase the toistisc The LCSF and NLC models in
turn indicate that the technology in this indusgrhibits some heterogeneity. Although
the output elasticities evaluated at the samplenmaea similar in the two classes in both
models, the technological heterogeneity can beicoéatly appreciated when we
compare the second-order coefficients of the threputs.

The estimated coefficients for the weather varsflfIND and WINDEX) and the
distance to coast geographic variable (DIS) sugtestthere are notable differences
among the utilities in costs attributed to diffarenmvironmental conditions. It is worth
mentioning that most coefficients of OH interactimgth these three contextual
variables are statistically significant, indicatitigat the effect of any of the weather
variables is larger when the importance of overhdéads increases. While the
coefficients of WIND are negative (but rarely siipant), the effect of WINDEX on
firms’ costs is mostly significant and positive icating that a higher exposure to wind
implies larger costs to the distribution networs the other hand, the coefficient of
the distance to the coast is always negative. hght indicate that inland weather
conditions are, as expected by the regulator,\lik@be less severe than coastal weather
conditions.

In addition to the frontier parametersable 2displays the coefficients of the
variables that are related to the inefficiency tems determinants of either the
inefficiency term (i) or the probability of being inefficienyf;). Several results, most
of them common to the four alternative specificasiaf our cost model, are worth
mentioning. First, the negative sign for the timment also suggests, although not
always significant, that the regulation system ionMay has been able to encourage
firms to improve their performance during the sanpkriod. The improvement in
firms’ performance is clear iRigure 1, where we depict the temporal evolution of the
average efficiency scores that are obtained usimdonr specificationd?

[Insert Figure 1]

Second, we obtain a negative coefficient for NLbimth RSCFG and LCSF
models indicating that larger utilities tend tornere efficient than smaller utilities. In
contrast, the positive coefficients of ST and Oldi¢ate that it is more difficult to
manage firms with many stations and longer overHees. It is interesting that, the
aforementioned efficiency determinants do not appeae significant in one of the
classes of the LCSF model. Hence, we do not findeexe that these technology
features make the operation of the distributiorwnéts more costly. They are also not
statistically significant when we move to the ZI&8Rd NLC models that distinguish
between inefficient and fully efficient firms.

3 Also Salvanes and Tjgtta (1998) find evidence attiral monopoly characteristics in the Norwegian
electricity distribution networks.
" This figure will be further examined later on.



While the technological variables included as éfficy determinants are still
significant in the ZISF model, the probability ofibg inefficient does not depend on
any covariate. This indicates that each firm has gsame probability of being fully
efficient, and they cannot use their size or ottlearacteristics of their network as
reason for not being 100% efficient. A similar coemhcan be made regarding one of
the classes of the NLC model as the probabilitpehg inefficient in this class does
not depend on any covariate. In contrast, the foitibaof being inefficient in the other
class decreases (increases) with network size (auoflstations). These two outcomes
therefore reinforce the previous results NL andv&Te only included as determinants
of firms’ inefficiency.

We compare inmable 3the sample partition using our preferred NLC madtat
controls for unobserved differences in technology dirm behaviour with those
obtained using the more restrictive LCSF and ZISfats that only capture differences
in one of the above-mentioned dimensions, and ht#reesample partitions should be
interpreted with caution as unobserved differenicesechnology might be labelled
incorrectly as differences in behaviour, and viesa. Compared to our preferred
model that allocates a 40 and 60% of the obsemnstim Class 1 and Class 2
respectively, the LCSF model slightly balances tillscation as the smaller (larger)
class now includes a 44% (56%) of the sample. ldstevell that, while all firms in the
LCSF model are inefficient to some extent, the deinefficient firms in thesecond
classof the NLC model only represents a 43% of all obatons allocated to this
class®® Therefore, the efficiency scores of these firmshim LCSF model are expected
to be seriously biased.

The ZISF model distinguishes between both typedirofs. However, as it
ignores the existence of unobserved differencésannology, it only identifies 42 firms
as fully efficient firms that represent a 35% of tbbservations. The NLC model
identifies a larger number of fully efficient firm(ge. 48) that represent a 40% of the
sample. In other words, in the ZISF model, somendirare wrongly labelled as
inefficient because their inefficiency scores haeen computed using a common cost
frontier to all firms and common efficiency coeféats (two assumptions that are
rejected in our application). In addition, othemfs in the ZISF model are wrongly
labelled as fully efficient as only 11 of the fukgfficient firms of the ZISF model are
identified as fully efficient using our preferred. 8 model.

[Insert Table 3]

Figure 1depicts the average efficiency scoresatbfffirms in the case of the
RSCFG and LCSF models - where there are no fuflgieft firms - and the average
efficiency scores of only those firms that are fudly efficient in the ZISF and NLC
models. Our efficiency estimates are high, randingh 87 to 97%. Similar figures are
obtained in Miguéis et al. (2012) using a DEA metiar the period 2004 to 2007, and
in Growitsh et al. (2012) using a SFA approachtfe@ 2001-2004 period. The latter
authors also found that efficiency estimates stsodgpend on the empirical strategy to
control for observed and unobserved heterogen€itg. average efficiency level of the
inefficient firms in the ZISF model is 87%. Theigsted efficiency level of these firms
in the RSCFG model is much higher, 97%, indicathrag ignoring the existence of two

 This percentage increases up to 85% in the first class.
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types of firms (i.e. inefficient vs. fully efficightends to bias upwards the efficiency
scores of those firms that are not fully efficieihe same comment can be made
regarding the inefficient firms of the second clagshe NLC model as their average
efficiency level (91%) is far from that estimaté&®%) using the RSCFG mod8l.

Table 4shows the coefficients of correlation between gairefficiency scores
obtained using our alternative specifications @& tost model. The table provides the
coefficients of correlation using all observatioinsour sample or the observations
allocated to particular technological or behavibwatasses. The computed coefficients
are often quite low, indicating that ignoring unebsed differences either in technology
or in firms’ behaviour might seriously bias the kang of firms in accordance to their
estimated efficiency levels. For instance, the foceht of correlation between the
RSCFG and LCSF models is only about 55% (49% usimgpreferred NLC model).
This correlation declines up to 33% if we only uke observations belonging to the
second class of the LCSF model. The correlatiowdst LCSF and NLC models is
relatively large, but far from 100% in the casetltd second class. On the other hand,
the coefficient of correlation between the ZISF wloahd other three models is lower
than 50%. Regarding our preferred NLC model, theffement of correlation is only
about 42%. This correlation drops up to 25% if vyase the observations belonging
to the first class of this model.

[Insert Table 4]
5. Conclusions

In many countries, the electricity regulators amnnmeasure the network utilities’
efficiency against best practice performance. Brram identifying the correct
benchmark firms or measuring their efficiency hagaortant financial implications for
all the less efficient firms against which they ammpared. For this reason, obtaining
reliable measures of firms’ inefficiency often r@gs controlling for unobserved
differences in the firms’ technology or in the gemyghical and weather conditions under
which each utility operates. Several well-knowretdtclass stochastic frontier models
now allow researchers (and regulators) to accoumthie above-mentioned technology
heterogeneity.

The regulators would also be interested in idemigythe fully efficient network
utilities that can be used as “reference netwofks’other (comparable) utilities. The
‘zero inefficiency stochastic frontier model inthaced recently byKumbhakar et al.
(2013) can be used to achieve this aim. However, this inddes not control for
unobserved differences in technology or environalesanditions.

The present paper extends the ZISF approach tarnakaccount the heterogeneity
in firms’ technology as well as in their environn@conditions. We take advantage of
the differences in the nature of both sources a@bgarved heterogeneity to develop a
nestedlatent class (NLC) model. The behavioral diffeem@re modeled using two

'® However, the average efficiency level of the irgéft firms in the first class of the NLC modehist
seriously biased as the efficiency score usindRBEFG model is of similar magnitude on average.
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ZISF models that are in turn nested in a latenssclstructure that aims to capture
unobserved differences in technology or environaecdnditions. To our knowledge,

the present study is the first to proposenestedlatent class model to distinguish
between fully efficient and inefficient firms whethe underlying technology is

heterogeneous. The present paper study is alsofidteto introduce the zero-

inefficiency approach in a regulatory context.

We illustrate the proposed models with an applaicato the Norwegian distribution
network utilities for the period 2004-2011. Followi the Norwegian benchmarking
approach, four alternative specifications of a c¢ostel are estimated, wheresacial
measure of firms’ costs is used as dependent Varidth addition to the traditional
output and input prices, we have added a numberl@fant environmental variables as
cost drivers in our analysis, as well as the paeggnof overhead lines, i.e. the most
important characteristic of firms’ networks.

In general, all models perform quite well as thatoelasticities evaluated at the
sample mean have the expected signs and their tunegsiare quite reasonable from a
theoretical point of view. However, based on thé&uea of the estimated likelihood
functions, we concluded that the NLC model is trefgrred model, and that the results
for the firms’ technology and efficiency using thre restrictive RSCFG, LCSF and
ZISF models should be interpreted with caution.

Overall our results suggest the presence of notdiffierences among utilities in
costs attributed to different weather conditionsl docations. On the other hand, we
have found that the regulation framework in Norvwag been able to encourage firms
to improve their performance during the sampleqekriWe have also obtained evidence
about the relationship between firms’ inefficienagd some characteristics of their
networks. In particular, most of our specificatiagygest that larger networks tend to
be more efficient than smaller ones, and that ihae difficult to manage firms with
more numerous stations and overhead lines.

We have found that our preferred model and the mestrictive LCSF and ZISF
models split the sample into groups in rather d&fifieé ways. Therefore, the efficiency
scores in both LCSF and ZISF models are expectdx teomewhat biased. We have
also found that our NLC model identifies a largemtoer of fully efficient firms than
the ZISF model, indicating that some firms in tH&Z model are wrongly labelled as
inefficient. In addition, other firms are wronglgdelled as fully efficient by the ZISF
model.

Our efficiency estimates are somewhat high andlainto those obtained in the
literature using both parametric and non-parametpproaches. However, we have
found that the efficiency scores of inefficientfis tend to be biased upwards if we do
not distinguish between inefficient and fully efént networks. The computed
coefficients of correlation between pairs of e#fiety scores are often quite small.
Overall, our results indicate that the efficiencpi®es of our models not only might be
biased if we ignore unobserved differences in tetdgy (see previous literature), but
also if we are not able to separate the fully effic networks from the inefficient
networks.
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Table 1. Descriptive statistics of the data.

Mean St.Dev. Min Max
COST 77700.02 132024.01 2343.05 793884.71
PK 0.06 0.01 0.05 0.08
PL 163.67 16.99 139 189.5
PE 331.02 73.94 234.6 436.3
CUs 16753.17 33229.86 348 182746
ST 809.9 1381.62 29 9428
DE 432406.39 875129.47 6915 5200000
NL 661.83 1036.34 30 6542
WIND 25.5 2.44 22 31
WINDEX 5.28 1.04 2.71 8.13
DISTANCE 53824.79 55649.33 190.96 196377
OH 0.68 0.19 0.14 0.97
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Table 2. Parameter estimates.

RSCFG ZISF LCM NESTED LCM

Parameters Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio Coef. t-ratio
Cost frontier function Class 1 Class 2 Class 1 Class 2
Intercerpt 10.554 9019 | 10.493 1923.6 | 10.454 699.5 10.623 1220.8 | 10.444 5412 10.611 1313.2
InCUS 0.335 9.963 0.377 18.741 | 0.329 10.227 0.370 15.851 | 0.373 6.744  0.384 11.380
InNL 0.465 26.567 | 0.504 42.258 | 0.499 18.268 0.509 34.275| 0.511 15.429 0.479 36.922
InDE 0.116 3.988 0.063 3.392 0.132 4.199 0.087  4.188 0.093 2.232 0.088 2.854
0.5-Incus 0.176 1.067 0.268 2.486 -1.043  -3.327 0.035 0.227 -0.961  -1.942 0.007 0.053
0.5-InNL? -0.004 -0.085 | -0.108 -4.342 | -0.246 -6.008 0.169 4.302 -0.254  -2.732 0.249 5.920
0.5-InDE 0.071 0.884 0.088 1.784 -0.256  -1.115 0.018 0.151 -0.149  -0.434 0.007 0.061
INCUS:- InNL -0.041 -0.559 | 0.008 0.195 0.689 7.296 -0.018 -0.269 0.764 6.441 -0.070 -1.273
INCUS:InDE -0.115 -1.007 | -0.201 -2.648 0.580 2.233 0.045 0.352 0.473 1.152 0.084 0.711
InNL-InDE 0.047 0.775 0.081 2.309 -0.489 -6.537 -0.134 -2.449 | -0.550 -6.112 -0.144 -2.975
InPK 0.187 7.300 0.268 7.978 0.235 5.100 0.199 5.986 0.226 3.932 0.200 6.967
InPL 0.764 17.398 | 0.670 9.470 0.678 8.895 0.769 11.898 | 0.687 7.743 0.771 12.301
OH -0.289 -6.162 | -0.352 -10.186| -0.442 -7.101 -0.443 -5934 | -0470 -7.048 -0.202 -4.116
WIND -0.005 -1.602 | -0.003 -1.792 0.002 0.676 0.005 1.649 0.000 -0.039 0.002 0.568
WINDEX 0.019 2.620 0.021 4,720 -0.035 -4.963 -0.007 -1.071 | -0.034 -3.323 0.000 0.008
InDIS -0.015 -3.741 | -0.009 -3.938 | -0.017 -5.127 -0.018 -5.502 | -0.025 -4.401 -0.017 -3.865
OH-WIND -0.094 -5.300 | -0.108 -9.720 | -0.116 -9.518 -0.170 -6.892 | -0.140 -6.067 -0.128 -6.392
OH-WINDEX 0.225 6.241 0.248 11.359 | 0.292 8.545 0.413 5.169 0.344 7.260  0.340 4.239
OH-InDIS -0.101 -4855 | -0.105 -7.191 | -0.032 -1.276 -0.047 -1.744 | -0.014 -0.346 -0.022 -0.602
Random noise

Intercept -2.080 -82.14 | -2.484 -77.23 | -2.618 -65.87 -2.542 -66.31 | -2.693 -49.031 -2.628 -62.49

Note: shadowed coefficients indicate they are ficamt at 10%.

16



Table 2. Parameter estimates (Cont.)

RSCFG ZISF LCSF NLC
Parameters Coef. t-ratio Coef. t-ratio Coef. t-ratio  Coef. t-ratio Coef. t-ratio Coef.  t-ratio
Inefficiency term
Intercept -1.743 -6.053 | -1.696 -16.597 | -1.355 -2.540 -3.567 -9.848 -1.242 -1.824 -1.978 -7.341
t -0.538 -2.465 | -0.020 -0.946 -0.607 -1.790 -0.040 -0.911 -0.511 -1.574 -0.057 -1.495
InNL -1.866 -1.947 | -0.805 -4.900 -0.512 -0.653 -3.795 -3.884 0.036 0.031 0.125 0.140
InST 1.950 1.990 0.678 3.911 0.682 0.894 2.538 3.283 0.218 0.191 -0.376 -0.490
OH 0.661 0.544 0.483 1.922 -0.282 -0.288 4.933 3.887 0.487 0.414 1.526 1.773
Zero inefficiency-class probabilities
Intercept 0.664 2.151 2.537 0.700 -0.080 -0.120
InNL 0.072 0.049 -3.305 -0.287 -8.110 -2.160
InST -0.419 -0.306 2.532 0.243 7.342 2.049
OH -0.955 -0.522 -5.594 -0.468 -8.797 -1.598
Technology-class probabilities
Intercept -0.259 -1.326 -0.442 -2.230
OH -2.748 -1.706 -2.360 -1.354
Obs. 957 957 957 957
LF 612.761 730.02 931.018 971.594
Mean LF 0.640 0.763 0.973 1.015
Parameters 25 29 52 60
AlC -1175.52 -1402.06 -1758.04 -1823.19
BIC -1053.93 -1261.01 -1505.12 -1531.36

Note: shadowed coefficients indicate significanc&Co.
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Table 3. Sample partition

NLC LCSF
Class 1 Class 2 Class 1 Class 2 ZISF
SFA 327 249 422 535 623
Zl 56 325 0 0 334
SFA+ZI 383 574 422 535 957
All 957 957 957

Table 4. Efficiency scoresCoefficients of correlation

RSCFG | LCSF | ZISF
LCSF
All 0.55
Class 1 (0.94)
Class 2 (0.33)
ZISF
All 0.30 | 0.46
SFA (0.43) | (0.62)
NLC
All 0.49 | 0.77 | 0.42
Class 1+ SFA| (0.89) |(0.98) | (0.25)
Class 2 + SFA| (0.33) [(0.78) | (0.71)

Figure 1. Annual efficiency scores
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